Astrophysical Thinking 2018 hand in by May 31st

1. Planetary J_2

The J_2 of an object has simple physical interpretations. Its order of magnitude can be estimated as either

$$J_2 \sim \frac{R_e - R_p}{R_e} \tag{1}$$

where R_e is the objects equatorial radius (measured perpendicular to the spin axis) and R_p is the objects polar radius (measured parallel to its spin axis). Alternatively, we can estimate it as

$$J_2 \sim \frac{\text{Rotational Kinetic Energy}}{\text{Gravitational Potential Energy}}.$$
 (2)

(a) Use the second equation to derive an analytic expression for J_2 in terms of the spin frequency of the planet (Ω) , the mean density of the planet $(\bar{\rho})$, and any natural constants. (b) Estimate J_2 for the Earth and for Saturn without looking up the answers directly. Then compare your answers to the truth by looking up the answers directly. (c) When will J_2 of a planetary object be zero?