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In this course (formerly known as theoretical cosmology), we study the history of our universe
on large scales. We first discuss key cosmological observations that led to our standard model of
cosmology, and we study in detail the origin and the evolution of the Universe such as inflation,
big bang nucleosynthesis, and cosmic microwave background anisotropies. In the second part we
learn (relativistic) perturbation theory and apply it to initial conditions, large-scale structure and
weak gravitational lensing. It is recommended to have good understanding of general relativity and
quantum field theory, albeit not mandatory.
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1 Early Universe Physics

1.1 Chronology of the Early Universe

t T ∝ ρ1/4 Redshift Event
10−43 s 1019 GeV ∞ Planck energy, Quantum gravity? Big Bang Singularity?
10−38 s 1016 GeV ∞ Inflation ends? Grand Unification Scale? Baryogenesis?
10−11 s 100 GeV 1015 Electroweak phase transition (spontaneous symmetry breaking)
10−5 s 150 MeV 1012 Quark-hadron (QCD) phase transition (Tc ≃ ΛQCD)
1 sec 1 MeV 6× 109 νe decoupling (νe ≈ 1 MeV, νµ, ντ ≈ 3 MeV )
6 sec 500 keV 2× 109 eē annihilation
3 min 100 keV 4× 108 Nucleosynthesis (BBN)
60 kyr 0.75 eV 3200 Matter-radiation equality
300 kyr 0.3 eV 1100 Atom formation, photon decoupling (CMB)
400 Myr 5 meV ∼ 10 Reionization
9 Gyr 0.33 meV 0.4 Dark energy-matter equality
Now 10−4 eV (2.73 K) 0 now

At the early Universe, the Universe was denser and hotter, dominated by the relativistic particles and radiation. Be-
cause of its high energy, particles and anti-particle pairs are created and annihilated. This process depends on the particle
contents of our nature. The standard model of particle physics is well tested and understood up to ∼ 1 TeV (horizontal
line in the table), beyond which the predictions from the standard model are somewhat uncertain and other beyond-the-
standard-model physics have vastly different predictions. Our discussion will be limited to the standard model physics.

In this radiation dominated era, almost all particles behave like massless particles, and their energy density evolves
as radiation ρ ∝ 1/a4. In RDE, the Hubble expansion and the age of the Universe are well approximated in terms of the
equilibrium temperature T of the plasma as

H ≃ 0.3 sec−1
√
g∗

(
T

1 MeV

)2

, t =
1

2H
≃ 1 sec

(
T

1 MeV

)−2
g
−1/2
∗ , (1.1)

where g∗ is the total spin-degeneracy factor shown in Figure 1.1. Particles stay in thermal equilibrium with the plasma, as
long as their interaction rate Γ with the plasma remains sufficiently high:

Γ = n ⟨σv⟩ ≥ H , (1.2)

where σ is the interaction cross section [σ] = L2, v is the relative velocity of the particles in interaction, and n is
the particle number density. Note that the interaction rate is averaged over the particle velocity distribution. A useful
conversion relation is

1 MeV = 1.602× 10−6 erg = 1.161× 1010 K . (1.3)

At T < 1016 GeV, the dominant interaction among the relativistic particles is mediated by massless gauge bosons,
and the cross section is σ ∼ α2/T 2, such that the interaction rate is Γ ∝ nσv ∼ α2T , where the SU(2) gauge coupling
constant is g = 1/

√
4πα and we used n ∝ T 3, v ∼ 1. Therefore, the interaction is efficient to maintain the thermal

equilibrium
Γ

H
∼ 1016GeV

T
≫ 1 for T < 1016 GeV . (1.4)

At lower temperature T < 300 GeV, the interactions are now mediated by massive gauge bosons (e.g., mZ ≃ 100 GeV),
and the cross section is σ ∼ G2

FT
2, such that the interaction rate is Γ ∝ G2

FT
5. Therefore, the interaction is again

efficient to maintain the thermal equilibrium up to T > 1 MeV,

Γ

H
∼ G2

FT
3 ∼

(
T

1 MeV

)3

≫ 1 for T > 1 MeV , (1.5)
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where the Fermi constant is GF = 1.15× 10−5 GeV−2. Then, the question arises: what happens at T > 1016 GeV? The
Universe might not have been in thermal equilibrium at such early time.

A brief overview of the most important cosmological events are as follows (Mo et al., 2010):

• At T ≫ 1 TeV, two important events must take place: inflationary expansion and baryogensis. An inflationary
expansion for a very short period of time must have taken place to explain some of the key problems in observa-
tional cosmology, and some mechanism beyond the standard model must have been in operation to generate the
asymmetry between baryons and anti-baryons we observe today. The former is highly constrained and relatively
well understood, while the latter is very poorly understood. Beyond these two events that must have happened in
the early Universe, there might have been other interesting events in other beyond-the-standard-model physics such
as the grand unification. During this stage, quarks and gluons are not bound to hardronic states, such that there exist
no protons, neutrons and so on. The Universe was made of fundamental elementary particles, forming a hot plasma
(or soup).

• At T ∼150 MeV (t ∼ 10−5 sec), the quark–hadron phase transition occurs, confining quarks into hadrons, and
the chiral symmetry is broken. Lattice QCD calculations show that the electroweak and QCD phase transitions are
smooth. Once the transition was complete, the Universe was filled with a hot plasma consisting of three types of
relativistic pions π±, π0 (mπ± = 139.6 MeV, mπ0 = 135.0 MeV), non-relativistic nucleons (p, n), relativistic
leptons e±, µ± (mµ = 105 MeV), and their associated neutrinos (νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ ), and photons, all in thermal
equilibrium. Heavier lepton τ (mτ = 1.78 GeV) have already annihilated, and only a trace amount due to lepton
asymmetry must have remained.

• At T ∼ 100 MeV (t ∼ 10−4 sec), pions become non-relativistic, and π±-pairs annihilate each other, while the
neutral pions π0 decay into photons. From this point on, protons and neutrons are the only hadronic species left. At
about the same time, muons µ± start to annihilate.

• At T ∼ 1 MeV (t ∼ 1 sec), electrons and positrons become non-relativistic, annihilating each other. At about
the same time, e-neutrinos νe also decouple from the hot plasma. µ- and τ -neutrinos decouple a bit earlier than
e-neutrinos. The weak interactions become ineffective, and the ratio of neutrons to protons is frozen.

• At T ∼ 0.1 MeV (t ∼ 3 minutes), the Big Bang Nucleosynthesis (BBN) starts, synthesizing protons and neutrons
to produce D, He and a few other heavy elements. This nuclear fusion is exactly the same as one at the core of stars,
but it takes place everywhere in the Universe.

• At T ∼ 4000 K (t ∼ 2 × 105 yr), free electrons and protons recombine to form neutral hydrogen atoms. The
Universe then becomes transparent to photons, and these free-streaming photons are observed today as the cosmic
microwave background (CMB) in a black-body distribution.

• dark age, first stars, cosmic reionization, habitable planets and life formation, dark energy domination

1.2 Thermal Equilibrium in the Early Universe

1.2.1 Chemical Potential

• Thermodynamic Quantities.— Consider creating a system with internal energy U in an environment with tempera-
ture T . The Helmholtz free energy F = U − TS is needed to create such system with the help from the environment,
where S is the entropy of the final system. In a given environment, the system tends to minimize the internal energy or
maximize the entropy, i.e., minimize the Helmholtz free energy. At the minimum of the Helmholtz free energy, the system
reaches the thermal equilibrium. The Enthalpy H = U + PV is similar, but such system is created from a small volume,
that more energy for PV work is needed. Finally, the Gibbs free energy is the combination of all: G = U − TS + PV .
They are all related by the Legendre transformation.

• Legendre Transformation.— converts a function of a set of variables to another function of their conjugate variables.
For example, consider a function f(x, y). The conjugate variables of (x, y) are (U,W )

U :=

(
∂f

∂x

)
y

, W :=

(
∂f

∂y

)
x

, df = U dx+W dy . (1.6)

2
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Now consider a combination of two variables Wy and a new function g := f −Wy:

d(Wy) = y dW +W dy , dg = df − d(Wy) = U dx− y dW , (1.7)

which implies that the function g has two independent variables x and W :

g = g(x,W ) , U =

(
∂g

∂x

)
W

, y = −
(
∂g

∂W

)
x

. (1.8)

In this way, three functions can be obtained by Legendre transforming f(x, y) with two variables.

• Chemical Potential.— Consider a thermodynamic system, in which particles are created and annihilated. The amount
of energy needed to create a particular species is called the chemical potential (by definition):

dU =: TdS − PdV +
n∑
i=1

µidNi , µi =

(
∂U

∂Ni

)
S,V,Nj ̸=i

, (1.9)

when the entropy and the volume of the system are held fixed. While exact in the definition, it is in practice difficult to
find a situation, where the volume and the entropy is held fixed. Instead, the other relation is more illuminating for the
meaning of the chemical potential:

dG = −SdT + V dP +
n∑
i=1

µidNi , µi =

(
∂G

∂Ni

)
T,P,Nj ̸=i

. (1.10)

In thermodynamic equilibrium with constant temperature and pressure, the system exchange particles with its environ-
ments. Then we have

dG = 0 ,
n∑
i=1

µidNi = 0 . (1.11)

The chemical potential µ is independent of its fundamental physical properties of particles, but determined by the interac-
tions and the thermodynamic system (e.g., what is conserved). However, since photons are always created and absorbed
by a black body, its chemical potential is always zero in equilibrium. Another example is the electron pair production
process:

env + γ + γ ←→ e+ ē+ env , 2 µγ = µe + µē , ∴ µe = −µē , (1.12)

in which the chemical potential of a particle and its anti-particle has the opposite sign.

1.2.2 Equilibrium Distribution

As long as the scattering process or the interactions between particles are rapid, particles are in kinetic equilibrium, and
their phase-space distribution function f(x, p, t) is described by the thermal equilibrium distribution:

f(p, t)d3p =
g

(2π)3
d3p

exp[(E − µ)/T ]± 1
,

{
+ : Fermion
− : Boson

, (1.13)

where g is the spin-degeneracy factor for a given phase-space density and (2πℏ)3 is the unit phase-space volume. Mind
that our convention assumes ℏ = c = k = 1. In a homogeneous and isotropic background universe, the position
dependence and directional dependence vanish. The physical quantities of such particle distribution are

n(t) =

∫
d3p f(p, t) =

g

2π2

∫ ∞
m

√
E2 −m2 EdE

exp[(E − µ)/T ]± 1
, (1.14)

ρ(t) =

∫
d3p Ef(p, t) =

g

2π2

∫ ∞
m

√
E2 −m2 E2dE

exp[(E − µ)/T ]± 1
, (1.15)

P (t) =

∫
d3p

1

3

p2

E
f(p, t) =

g

6π2

∫ ∞
m

(E2 −m2)3/2 dE

exp[(E − µ)/T ]± 1
, (1.16)
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where the isotropic pressure is derived from P = 1
3n ⟨pv⟩ and v = p/E. Since the baryon to photon number ratio is so

small,
η :=

nb
nγ
≃ 5× 10−10 , (1.17)

the chemical potential of all species may be approximated as zero for computing the thermodynamic quantities of the
early Universe, where photons with µγ = 0 are the dominant. The ratio of the lepton number density to the photon is also
expected to be the same as η.

For non-relativistic particles (m ≫ T , E ≃ m), the distinction between Fermionic and Bosonic particles disappear,
and they all follow the classical Maxwell-Boltzmann distribution

f(p, t) =
g

(2π)3
exp

(
−m− µ

T

)
exp

(
− p2

2mT

)
. (1.18)

By integrating the distribution, we obtain

n(t) = g

(
mT

2π

)3/2

exp

[
−m− µ

kT

]
, ρ(t) = mn , P (t) = nkT (1.19)

In contrast, for relativistic particles (T ≫ m, T ≫ µ), the physical quantities are

n(t) =

{
g
π2 ζ(3)

(
kT
ℏc
)3

: Boson
3g
4π2 ζ(3)

(
kT
ℏc
)3

: Fermion
, ρ(t) =

{
gπ2

30 kT
(
kT
ℏc
)3

: Boson
7
8
gπ2

30 kT
(
kT
ℏc
)3

: Fermion
, P (t) =

1

3
ρ(t) ,

(1.20)
where the Riemann-Zeta function is

ζ(n) :=
∞∑
i=1

1

in
, ζ(3) ≃ 1.202 . (1.21)

Since the number density of non-relativistic particles in thermal equilibrium is exponentially suppressed, only the rela-
tivistic components matter in determining the thermodynamic quantities of the system:

ntot(T ) =
ζ(3)

π2
g∗,nT

3 , ρtot(T ) =
π2

30
g∗T

4 , Ptot(T ) =
1

3
ρ(T ) , (1.22)

where we assumed µi ≡ 0 for all species and defined

g∗,n :=
∑

i∈Boson

gi

(
Ti
T

)3

+

(
3

4

) ∑
i∈Ferm.

gi

(
Ti
T

)3

, g∗ :=
∑

i∈Boson

gi

(
Ti
T

)4

+

(
7

8

) ∑
i∈Ferm.

gi

(
Ti
T

)4

.

(1.23)

1.2.3 Entropy Density

In the early Universe, particles are created and annihilated. As the Universe expands and cools, some particles annihilate
and disappear. Hence the total number is not conserved. So, it is useful to have some quantity that is related to the
conservation law, i.e., entropy density s(T ). Assuming µ ≡ 0, the entropy density for relativistic particles is defined as

s :=
1

T
(ρ+ P )tot = g∗,s

(
2π2

45

)
T 3 , g∗,s :=

∑
i∈Boson

gi

(
Ti
T

)3

+

(
7

8

) ∑
i∈Ferm.

gi

(
Ti
T

)3

. (1.24)

We will show that the conservation of total entropy of the Universe states

S := sa3 ,
d

dt
S = 0 , g

1/3
∗,s (T ) T ∝

1

a
. (1.25)

The thermodynamic laws TdS = dU + PdV apply to the whole system, which is the Universe in our case. The total
energy or entropy, etc of the Universe are ill-defined. Instead, we look for local densitites that represent the entropy, i.e.,
the entropy density s.

4
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Figure 1.1: Effective number of relativistic dof. The gray bands represent the QCD phase transition and the neutrino
decoupling. The difference around 1 TeV is due to the non-perturbative QCD effect. Taken from Baumann et al.

Taking the derivative of P (t) with respect to T of a fluid and treating the chemical potential as a function of T , we
obtain

dP

dT
= −4π

3

∫ ∞
0

dp (p3T )

(
df

dp

)[
E

T 2
+

d

dT

(µ
T

)]
,

df

dp
= − p

ET
f2(p, t) exp

(
E − µ
T

)
, (1.26)

and with integration by part we re-write the derivative as

dP

dT
=
ρ+ P

T
+ nT

d

dT

(µ
T

)
≈ ρ+ P

T
. (1.27)

Manipulating the conservation equation

ρ̇+ 3H(ρ+ P ) = 0 , d
(
ρa3
)
= −Pd

(
a3
)
,

d

dT

[
(ρ+ P )a3

]
= a3

dP

dT
, (1.28)

we can arrive at the conservation equation

d(sa3) = −
(µ
T

)
d(na3) ≈ 0 , s :=

ρ+ P

T
− nµ

T
≈ ρ+ P

T
. (1.29)

In most cases, the chemical potential is negligible (µ≪ T ) or the number density is conserved (n ∝ 1/a3), such that the
combination (sa3) is conserved throughout the evolution. Simplifying the relations for s and dP/dT by assuming µ ≡ 0,
we obtain the thermodynamic relation

dT

T
=

dP

ρ+ P
, S := sa3 , TdS = d

[
(ρ+ P )a3

]
− (ρ+ P )a3

dT

T
= d

(
ρa3
)
+ P d(a3) ,

(1.30)
with which we can identify s defined above as the entropy density and the total entropy S is conserved.

5
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1.2.4 Spin degeneracy factors

The spin degeneracy factor accounts for the number of degenerate states at the same energy level. The photon has two
polarization (gγ = 2), while neutrinos are only left-handed (gν = 1). Note that there exist three generations (ν, µ, τ ) of
neutrinos and their anti-particles (ν̄, µ̄, τ̄ ). Spin-1/2 fermions like electrons have ge = 2, and there exist three generations
and their anti-particles.

At T > 300 GeV, there exist 8 gluons (gg = 2), 3 weak gauge bosons (W±, Z), Higgs doublet (mH = 125 GeV),
three generations of quarks (gq = 2; two quarks per generation per color) and leptons (ge, gν) to yield1

g∗ = gγ + 8× gg + 3× gW±,Z + gH +
7

8
× 3× (3× 2× 2× gq + 2× gν + 2× ge) = 106.75 . (1.31)

At 150 MeV gluons hadronize, and soon after most of the particles become non-relativistic, according to their mass
(mH = 125 GeV, mZ = 91 GeV, mW± = 80 GeV, mτ = 1.78 GeV, mµ = 105 MeV). So at T ∼ 100 MeV, there left
only photons, electrons, and three generations of neutrinos:

g∗ = gγ +
7

8
(2× ge + 2× 3× gν) = 10.75 . (1.32)

At a freeze-out temperature T ∼ 1 MeV, all three generations of neutrinos decouple from the rest of the plasma
(Tτ ≃ 3.7 MeV, Tµ ≃ 2.4 MeV, Tν ≃ 1 MeV), and its temperature strictly declines as Tν ∝ 1/a, since its g∗,s remains
unchanged, after the decoupling. However, at about Tγ ∼ 0.51 MeV, electrons and anti-electrons become non-relativistic,
and they annihilate intro photons , transferring its entropy to the photon plasma, but not to the decoupled neutrinos, which
slows the decline of Tγ . Assuming an instantaneous transfer of entropy, the change in the spin-degeneracy factor of the
photon plasma can be computed as

gbefore∗,s = gγ +
7

8
(ge + gē) =

11

2
→ gafter∗,s = gγ . (1.33)

Given the conservation of g∗,sT 3 throughout the annihilation, the neutrino temperature is slightly lower than the photon
temperature, after the annihilation event

Tν =

(
4

11

)1/3

Tγ ∝
1

a
, (1.34)

and the spin degeneracy factor is then

g∗ = gγ +
7

8
(2× 3× gν)×

(
4

11

)4/3

= 3.36 . (1.35)

The total radiation density (γ, ν) is then

ρrad =

[
1 +Nν ×

7

8

(
4

11

)4/3
]
ργ , Nν = 3 , ργ = aBT

4
γ , (1.36)

where the radiation constant aB is related to the Stefan-Boltzmann constant σB as

aB =
4σB
c

= 7.573× 10−15 erg cm−3K−4 . (1.37)

In fact, at the annihilation of electrons and anti-electrons, the neutrino decoupling was incomplete, and some entropy is
dumped into neurinos as well. Hence the the neutrino temperature relation above is not precise, and the correction is often
rephrased as the effective relativistic degrees of freedom: Nν = 3.04. The evolution of the spin degeneracy factors is
shown in Figure 1.1. Today the photon plasma cools down to

Tγ = 2.73K , nγ = 413 cm−3 , ργ = 4.7×10−34 g cm−3 , ωγ = 2.5×10−5 .
(1.38)

1After the spontaneous symmetry breaking, the weak gauge bosons are massive (gW±,Z = 3), and the Higgs boson is left with only one dof
(gH = 1), such that there exist 10 dof. Mind that at this energy scales, they are all non-relativistic. However, before the symmetry breaking, the
gauge bosons are massless (gW±,Z = 2), and the Higgs boson doublet has full dof (gH = 4; two per each component), such that the total dof
remains the same.

6
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The cosmic neutrino plasma is

Tν = 1.95K , nν+ν̄ = 113 cm−3 , n∀ν = 338 cm−3 (ν+µ+τ) , ων = 1.7×10−5 ,
(1.39)

for massless neutrinos. Assuming they are relativistic at decoupling, the massive neutrinos

ρν = 113mν cm
−3 , ων = 0.1

( mν

10 eV

)
. (1.40)

1.3 Distribution of Decoupled Species

As the Universe expands and cools down, the interaction rate Γ between species falls below the expansion rate H(t), so
that a particle species decouples from the plasma. This is called “freeze-out” because there exist no further interactions
and its distribution remains frozen. Since the momentum of both massless and massive particles redshifts as 1/a in
the background universe, the current phase-space distribution of a decoupled species can be expressed in terms of the
equilibrium distribution at decoupling:

f(p, t) = feq

(
p
a

adec
, tdec

)
, t ≥ tdec , p(tdec) = p

a

adec
. (1.41)

When a relativistic species is decoupled at Tdec ≫ m, the Fermi-Dirac or Bose-Einstein distribution is maintained, and
hence the number density is as abundant as photons, but the freeze-out condition dictates its temperature declines as 1/a:

f(p, t) =
g

(2π)3

[
exp

(
p a

adecTdec

)
± 1

]−1
, T (t) = Tdec

adec
a

, (1.42)

where E ≃ p for relativistic particles. Note that the decoupled species evolves separately, so that the change in the
spin-degeneracy factor in the other plasma is irrelevant here.

However, when particles are non-relativistic (T ≪ m) at decoupling, the distribution function is the Maxwell-
Boltzmann distribution, and according to the freeze-out condition, the temperature of the decoupled species declines
faster than the relativistic particles

f(p, t) =
g

(2π)3
exp

(
− m

Tdec

)
exp

(
− p2a2

2m a2decTdec

)
, T (t) = Tdec

(adec
a

)2
, (1.43)

where the exponential exp(−m/Tdec) is constant. Consequently, the number density of a decoupled species evolves as

n(t) =

[
a(tdec)

a(t)

]3
neq(tdec) , (1.44)

for both relativistic and non-relativistic particles.
Using the entropy conservation in Eq. (1.25), we obtain the temperature ratio and the number density ratio of a

decoupled relativistic species to the photons as[
Tγ(tdec)

Tγ(t)

]3
=

g∗,s(t)

g∗,s(tdec)

a3(t)

a3(tdec)
,

n(t)

nγ(t)
=
geff
2

[
T (t)

Tγ(t)

]3
=
geff
2

g∗,s(T )

g∗,s(Tdec)
, (1.45)

where geff = g for bosons and geff = 3g/4 for fermions and we used the temperature of the decoupled species T (tdec) =
Tγ(tdec) at the time of decoupling.

1.3.1 Boltzmann Equation and Relic Number Density

The particle interactions involve multiple species, and they depend on the velocity distribution of the particles. Conse-
quently, solving for their evolution requires coupled differential equations, called the Boltzmann equation. Consider an
interaction ψ+a+ b+ · · · ↔ i+ j+ · · · that involves many particles and their creation and annihilation. The Boltzmann
equation for a species ψ (similarly for other particles) is

dfψ
dt

= Cψ[f ] , (1.46)

7
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where the right-hand side C is called the collision term that depends on the interaction and the distribution functions of
the other particles in interaction. In the absence of collision, the Liouville theorem states that the phase-space distribution
is conserved. In a homogeneous and isotropic universe, the phase-space distribution function cannot depend on a position
or a direction, i.e., fψ = fψ(p, t),

dfψ
dt

=
∂fψ
∂t

+
∂p

∂t

∂fψ
∂p

,
∂p

∂t
= −Hp , (1.47)

where we used p ∝ 1/a for any particles in the background universe. Integrating over the momentum, we derive that the
number density evolves as

dnψ
dt

+ 3Hnψ =

∫
d3p Cψ[f ] , nψ =

∫
d3p fψ . (1.48)

In the absence of collision, the number density decreases as nψ ∝ 1/a3, and the term 3Hnψ is called the Hubble drag (or
friction) due to the expansion of the Universe.

The collision term depends on the interaction process, and formally it can be expressed as∫
d3p Cψ[f ] =

(∏
i

∫
d4pi

)
(2π)4δD(pψ + pa + · · · − pi − pj − · · · ) (1.49)

×
[
|M|2←fifj · · · (1± fψ)(1± fa) · · · − |M|2→fa · · · fψ(1± fi)(1± fj) · · ·

]
.

The first line is just the energy-momentum conservation of the process, the second line shows the interaction of considera-
tion. The invariant matrix elementM can be derived from the QFT calculations, and with T-invariance (or CP-invariance)
it is identical in both directions (|M|2 := |M|2→ = |M|2←). The distribution functions fifj · · · in the second line indi-
cates that more particles i, j, · · · create more particles ψ, a, b, · · · , and vice versa. The extra factors such as (1 ± fψ) are
called the Pauli block (−) or the Bose enhancement (+).

For the moment, the collision term is macroscopically treated, and a significant simplification can be made, if most
species but ψ are in thermal equilibrium and the temperature is low T ≪ E − µ. Consider a simplified interaction
ψ + ψ̄ ↔ X + X̄ , in which ψ and ψ̄ annihilate and a pair of X and X̄ are created. At this low temperature T ≪ E − µ,
the number densities of particles can be written as

n =

∫
d3p f = eµ/TnEQ , nEQ :=

∫
d3p fEQ , fEQ := f(µ ≡ 0) ≃ g

(2π)3
e−E/T ,

(1.50)
where we ignored ±1 in the distribution function fEQ Further ignoring the Pauli block or the Bose enhancement, The
second line of the collision term is then greatly simplified as

fXfX̄ − fψfψ̄ = e−(Eψ+Eψ̄)/T
[
e(µX+µX̄)/T − e(µψ+µψ̄)/T

]
= e−(Eψ+Eψ̄)/T

 nXnX̄

nEQX nEQ
X̄

−
nψnψ̄

nEQψ nEQ
ψ̄

 , (1.51)

where we used the energy conservation Eψ + Eψ̄ = EX + EX̄ . Finally, we define the thermally-averaged velocity times
cross-section ⟨σv⟩ as

nEQψ nEQ
ψ̄

〈
σψψ̄→XX̄ |v|

〉
:=

(∏
i

∫
d3pi

)
(2π)4δD(pψ + pψ̄ − pX − pX̄)|M|2e

−(Eψ+Eψ̄)/T , (1.52)

and the Boltzmann equation (1.48) is now

dnψ
dt

+ 3Hnψ = nEQψ nEQ
ψ̄

〈
σψψ̄↔XX̄ |v|

〉 nXnX̄

nEQX nEQ
X̄

−
nψnψ̄

nEQψ nEQ
ψ̄

 . (1.53)

With near thermal equilibrium but ψ particles, we arrive at the final expression of the Boltzmann equation

dnψ
dt

+ 3Hnψ = ⟨σv⟩
(
n2ψ,EQ − n2ψ

)
. (1.54)

8
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Figure 1.2: The relic abundance for a simple two-body process with a constant β := ⟨σv⟩.

At thermal equilibrium, the number density nψ will be equivalent to nEQψ , and no further net change (creation or annihi-

lation) takes place. If nψ > nEQψ , more decay of ψ and ψ̄ will further reduce nψ and increase nX , and this is reflected in
the collision term, where the RHS is negative.

Given the entropy density scales as a−3, it is convenient to define a scaled number density Y that does not change in
time as long as n ∝ 1/a3,

Yψ :=
nψ
s
, Y eq

ψ :=
neqψ
s
. (1.55)

The Boltzmann equation is then manipulated in terms of Y as

dYψ
dt

= s ⟨σv⟩
(
Y 2
ψ,eq − Y 2

ψ

)
, (1.56)

and by defining a scaled (inverse) temperature x

x :=
mψ

T
, t =

1

2H
∝ 1

T 2
,

d ln t

dx
=

2

x
, (1.57)

the Boltzmann equation can be written as

x

Y eq
ψ

dYψ
dx

= −
neqψ ⟨σv⟩
H(x)

( Yψ
Y eq
ψ

)2

− 1

 . (1.58)

The variable x determines if the particle species is relativistic (x ≪ 1) or non-relativistic (x ≫ 1), but it also determines
the flow of time (x ≫ 1 at late time). Given the interaction cross-section, the Boltzmann equation can be numerically
solved with the initial condition of thermal equilibrium at early time Y (x = 0) = Yeq for all species. Assuming a constant
cross-section, several solutions to the Boltzmann equation are given in Figure 1.3, in which the equilibrium distribution
decays in time as the particle species becomes non-relativistic (x ≃ 1) and its abundance is exponentially suppressed
compared to the plasma. For a weak cross-section, the particle species decouples early when they are relativistic, and
their final abundance is similar to those of photons, rather insensitive of its exact value of the cross-section. For a stronger
cross-section, the particles stay in thermal equilibrium longer, and its final relic abundance is sensitively dependent on the
value of the cross-section.

A simple analytic approximation can be made to solve the Boltzmann equation. First, the equilibrium abundance
Y eq = neq/s is obtained by using neq in the relativistic and the non-relativistic cases as

Y eq
ψ (x) =

45ζ(3)

2π4
geffψ

g∗,s(x)
for x≪ 1 , Y eq

ψ (x) =
90

(2π)7/2
gψ

g∗,s(x)
x3/2e−x for x≫ 1 , (1.59)

9
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where geffψ = gψ for Boson and geffψ = 3gψ/4 for Fermion. Clearly, as the Universe evolves (x increases), Y eq also evolves
due to the change in neq. Second, the freeze-out (or decoupling) is assumed to be instantaneous, if Γ = H at xf . Equating
the interaction rate Γ at equilibrium with the Hubble parameter in RDE

H(x) =
8πG

3
ρtot =

√
π2g∗
90

m2
ψ

x2Mpl
, M2

pl =
1

8πG
, Γ = Y eq

ψ s ⟨σv⟩ , (1.60)

we obtain the freeze-out time

xf =

√
90

π6g∗
ζ(3)geffψ ⟨σv⟩mψMpl for x≪ 1 , x

−1/2
f exf =

√
45

4π5g∗
gψ ⟨σv⟩mψMpl for x≫ 1 . (1.61)

The condition xf ≪ 1 for the relativistic case constrains the strength of ⟨σv⟩ and also the mass mψ. The freeze-out for
the non-relativistic case needs to be solved, but its value is due to the exponential factor highly sensitive to the values in
the RHS.

Now we consider the relic densities today. First, they can be relativistic or non-relativistic today. The former is similar
to the photon distribution, and hence negligible. The latter, non-relativistic relic species today, is often called as the WIMP
(weakly interacting massive particles). WIMPS are non-relativistic today, and its energy density is dominated by their rest
mass energy. However, it can be relativistic (xf ≪ 1) or non-relativistic (xf ≫ 1) at the freeze-out. The former is called
the hot relic, and their abundance is as much as the photons today, while the latter is called the cold relic.

• Relativistic species today.— The relic density of a relativistic species can then be obtained by using Eq. (1.45) as

Ωψh
2

Ωγh2
=
ρψ
ργ

=
geffψ
2

(
Tψ
Tγ

)4

=
geffψ
2

[
g∗,s(x)

g∗,s(xf )

]4/3
. (1.62)

Given that g∗,s always decreases in time and Ωγh
2 = 2.5 × 10−5, the relic density of a relativistic species today is as

negligible as the photon energy density.

• Hot relics.— The relic density of a hot species is then

ρψ = mψY
eq
ψ (xf )s(x0) ∝ mψ , Ωψh

2 =
8πG

3H2
0

ρψh
2 = 7.64× 10−2

[
geffψ

g∗,s(xf )

]( mψ

1 eV

)
∝ mψ ,

(1.63)
where x0 is today. For hot relics, their number density is as large as the photons, and it is rather insensitive to xf . Note
that the dependence of ⟨σv⟩ is included in the freeze-out xf . For a large mass mψ, xf becomes comparable to unity, and
it cannot be hot-relic any more. Given the observational constraint Ωtoth

2 ≲ 1, we can derive that the mass of hot relics
should be smaller than

mψ ≤ 13.1 eV

[
g∗,s(xf )

geffψ

]
, (1.64)

which corresponds to

mν ≤ 93.8 eV , g∗,s(xf ) = 10.75 , geffν =
3

4
× 2× gν , (1.65)

for massive neutrinos (one species). This cosmological limit is called the Cowsik-McClelland bound. The Planck con-
straint is Σmν < 0.23 eV, and some recent Lyα-forest constraint is < 0.12 eV. The neutrino oscillation constraints give
0.0006 < ων < 0.0025.

• Cold relics.— Similar calculations can be made for cold relics, but the abundance Y eq
ψ is exponentially sensitive to xf .

The LHS for the freeze-out condition

x
−1/2
f exf =

√
45

4π5g∗
gψ ⟨σv⟩mψMpl , (1.66)
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Figure 1.3: Cosmological constraints on the mass of WIMP Ωψh
2.

increases monotonically with xf , i.e., the larger mψ or the stronger ⟨σv⟩, the later the freeze-out becomes, suppressing
the abundance exponentially. Keeping xf in the equation, we express the abundance and the relic density

Y eq
ψ (xf ) =

√
45

8π2
xf√
g∗,s(xf )

1

⟨σv⟩mψMpl
, Ωψh

2 = 0.86
xf√
g∗,s(xf )

[
⟨σv⟩

1010 GeV−2

]−1
. (1.67)

The relic abundance is sensitively dependent upon ⟨σv⟩, and it goes down with mψ. While the relic energy density has
no explicit dependence on mψ, the freeze-out time xf increases with mψ. For example, stable neutrinos of mass between
1 MeV and mZ = 100 GeV fall into this cold relic, and their weak interaction rate is

⟨σv⟩ ≈ c2
2π
G2
Fm

2
νx
−b for mψ < mZ , (1.68)

where c2 ≃ 5 for a Dirac neutrino, b ∼ 1, and GF is the Fermi constant. With this, the freeze-out time can be solved as

xf ≃ 17.8 + 3 ln
( mν

1 GeV

)
, (1.69)

and the relic energy density is

Ωνh
2 ≃ 3.95

c2

xb+1
f√

g∗,s(xf )

( mν

1 GeV

)−2
= 1.82

( mν

1 GeV

)−2 [
1 + 0.17 ln

( mν

1 GeV

)]
, (1.70)

The observational constraint puts the mass of stable neutrinos

mν ≥ 1.4 GeV , (1.71)

and the relic density is smaller with larger mass due to the larger cross-section and the suppression of the abundance.
However, for particles of mass mψ ≫ mZ , the cross-section decreases with particle mass as m−2, instead of increasing
with m2. This implies

Ωψh
2 ≃

( mψ

1 TeV

)2
, mZ ≤ mψ ≤ 3 TeV . (1.72)

For the cold relics, the bound is stronger, because of the non-relativistic freeze-out, and this gives a lower limit for the
massive cold relics, called the Lee-Weinberg bound. Figure 1.3 summarizes the cosmological bounds on viable models of
WIMPs.
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1.3.2 Relic Density of Decaying Particles

If a particle is unstable and decays into other particles, the Boltzmann equation can be supplemented by an extra term for
such decay. The number density of decaying particles is always governed by the half-life τ , beyond which the number
density is exponentially suppressed as

n(t) ∝ exp[−t/τ ] , (1.73)

but below which the particles behave like stable particles.
If the decay product involves photons, such particles are subject to more stringent observational constraints. A particle

decay into photons often involves strong Gamma rays, and these photons should be hidden from observations by prevent-
ing the particles decay with longer life-time or by themalizing them. It takes a while to thermalize Gamma ray photons
with background radiation, such that the decays must happen early enough.

1.4 Big Bang Nucleosynthesis

Where do we come from? To this philosophical question, here we find some physical answers. The basic structural unit of
life is cells that contain lots of molecules, and molecules are electrically neutral groups of atoms held by chemical bonds.
Atoms form the smallest unit of the (ordinary) matter, and they are composed of one nucleus and several electrons bound
to the nucleus. Where do they come from? Normal stars at the core fuse lighter elements like hydrogen and helium,
and more massive stars synthesize carbon, oxygen, and silicon, yielding irons, beyond which no net energy is gained
through nuclear fusion. Heavier elements are further generated by neutron captures in supernova explosions. However,
observations show that hydrogen and helium are ubiquitous in the Universe with almost constant ratio 75% hydrogen and
24% helium by mass. Indeed, the origin of those elements are primordial and global, rather than localized stars.

1.4.1 Proton and Neutron Abundances

All nuclei are made of protons and neutrons, and they are characterized by its charge number Z (number of protons) and
the atomic mass A (number of protons and neutrons). Given their mass mp ≃ mn ≃ 940 MeV, protons and neutrons are
non-relativistic at t ≃ 10−6 sec (T ≃ mp) with their number densities

nn,p = gn,p

(
mn,pT

2π

)3/2

exp

[
−mn,p − µn,p

T

]
, (1.74)

and they remain in thermal equilibrium until T ∼ 0.8 MeV via low-energy weak interactions

p+ e↔ n+ νe , n+ ē↔ p+ ν̄e , n↔ p+ e+ ν̄e . (1.75)

Hence the ratio of the number densities in thermal equilibrium is

nn
np

=

(
mn

mp

)3/2

exp

[
−mn −mp

T
+
µn − µp

T

]
≃ exp

[
−Q
T

]
, Q := mn −mp = 1.294 MeV , (1.76)

where we ignored the difference in the chemical potential µn−µp = µe−µν ≃ 0 in the weak interactions. At temperature
T ≫ Q, the ratio of the number densities is unity, but it continuously decreases at lower temperature (T < Q), because
neutrons are slightly heavier than protons. However, due to the neutrino decoupling at T = 1 MeV, the weak interactions
become inefficient to keep protons and neutrons in thermal equilibrium, such that the ratio freezes out at T ∼ 0.8 MeV

nn
np
∼ exp

[
−1.294

0.8

]
≃ 1

5
. (1.77)

Free neutrons can further β-decay into protons at any time with its half-life τ = 887 ± 2 sec (≃ 15 min), which could
have exhausted neutrons in our Universe. However, before they decay into protons, most neutrons are indeed captured in
deuterium and helium nuclei, where they are stable.2 By the time the big bang nucleosynthesis is active, the ratio becomes

nn
np
≃ 1

7
at t ≃ 300 sec . (1.78)

2Sometimes, Pauli’s exclusion principle is invoked for such stability, but neutrons do decay in nuclei, when energetically favorable. In nuclei,
all the neutrons and protons form a system, in which protons typically occupy higher energy state due to electromagnetic repulsion, such that nuclei
with somewhat more neutrons than protons are stable, because converting one neutron into a proton would need more energy. Of course, if even
more neutrons are present in nuclei, they inevitably occupy higher energy state than protons, and β-decay is then energetically favorable.
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Figure 1.4: Average binding energy of nuclei per proton. With the steep increase in the binding energy, nuclear fusion is
an efficient way to generate energy up to iron, beyond which the binding energy decreases. Nuclear fission can be used
for elements heavier than irons to extract energy, though not as efficient as nuclear fusion.

1.4.2 Nuclear Synthesis of Heavier Elements

With numerous protons and neutrons, they can be forged to form heavier nuclei, but they are dissociated immediately
by energetic photons, until the Universe cools below their binding energy (e.g., 2.22 MeV for deuterium). In thermal
equilibrium, the abundance of nuclei with atomic mass A with charge Z is

nA = gA

(
mAT

2π

)3/2

exp

[
−mA − µA

T

]
= gA

(
mAT

2π

)3/2

exp
[
−mA

T

] [
exp

(µp
T

)]Z [
exp

(µn
T

)](A−Z)
, (1.79)

where we used the relation for the chemical potential

µA = Zµp + (A− Z)µn . (1.80)

With the same formulas for the proton and the neutron number densities in equilibrium, we can remove the chemical
potentials µp and µn in favor of np and np to express

nA =
gAA

3/2

gAN
nZp n

A−Z
n

(
mNT

2π

) 3
2
(1−A)

exp

(
BA
T

)
, gN := gp = gn = 2 , (1.81)

where we approximated mN := mp ≃ mn and mA ≃ AmN , and defined the binding energy of nucleus

BA := Zmp + (A− Z)mn −mA . (1.82)

In the presence of heavier elements, the baryon number density is

nb := np + nn +
∑
i

AinA,i , (1.83)

and the mass fraction of each nucleus A:

XAi :=
AinA,i
nb

, 1 =
∑
i

XA,i . (1.84)
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Figure 1.5: Primordial abundances of light elements as a function of the baryon-to-photon ratio.

The baryon number density includes free neutrons and protons, but also accounts for those inside nuclei with weight Ai,
i.e., it is the total number densities of protons or neutrons, while the mass fraction shows how many nuclei are captured in
the nucleus. The number density of nucleus A can then be re-expressed by using nγ in Eq. (1.20) as

XA =
gA
2
A5/2

[
4ζ(3)√

2π

]A−1
XZ
p X

A−Z
n ηA−1

(mN

T

) 3
2
(1−A)

exp

(
BA
T

)
, (1.85)

where we defined the baryon-to-photon ratio:

η :=
nb
nγ

= 2.72× 10−8ωb

(
Tcmb

2.73 K

)−3
≈ 5× 10−10 . (1.86)

As the temperature of the Universe cools below the binding energy, nuclei with atomic mass A can form, and for the
mass fraction to be non-negligible (XA ≃ 1), the temperature has to be below

lnXA ≃ 0 , TA ≈
|BA|

(A− 1)
[
| ln η|+ 3

2 ln(mN/TA)
] . (1.87)

The deuterium 2D has the lowest binding energy BD = 2.22 MeV, but the formation of deuterium takes place only when
the temperature of the Universe is an order-of-magnitude below BD ≃ 2 × 1010 K due to large number of photons. The
high-energy tail (Wien) of the photon distribution is sufficiently large enough to destroy deuterium nuclei, until it reaches
TD ≈ 109 K (t ∼ 100 sec). This is the beginning of the Big Bang Nucleosynthesis (BBN).

Once the nucleosynthesis begins, many channels of nuclear reaction take place. However, since the number densities
of nuclei in the Universe are quite low at the time of BBN, only two-body interactions are possible, and the fact that there
are no stable nuclei with atomic mass 5 or 8 implies that no elements heavier than lithium 7Li (3 protons) can be produced.
The next element in periodic table is 9Be (4 protons). In contrast, at the core of massive stars, where the densities are even

14



AST513 Theoretical Cosmology JAIYUL YOO

higher, many-body interaction channels are allowed, and even a short-lived 8Be that formed through 4He-4He collision
can quickly capture another 4He to form a stable carbon 12C, allowing further nuclear reactions to proceed.

Since the binding energy of deuterium is the lowest, the formation of deuterium nuclei acts as a bottleneck for nucle-
osynthesis, as heavier elements are already allowed to form by TD. Consequently, almost all the deuterium nuclei (or free
neutrons) are processed to form helium nuclei, and the mass fraction of helium is

Y := X4He ≃
4(nn/2)

nn + np
=

2(nn/np)D
1 + (nn/np)D

≈ 1

4
,

(
nn
np

)
D

≈ 1

7
, (1.88)

where the subscript D indicates the time of deuterium formation, when helium nuclei are yet to form, i.e., nb = nn + np.
Observations of the helium mass fraction is about 24% everywhere, and the confirmation of this prediction for He is one
of the success of the Big Bang model in the early days.

The predictions of primordial nucleosynthesis and their observational confirmation is of course important. In particu-
lar, it helps constrain η or the baryon density ωb. However, it is in fact not easy to determine the primordial abundances
from observations, because the observed abundances have been re-processed through stars and other astrophysical events.
In the following we give a brief summary of the present observational situation (Mo et al., 2010):

• 4He: With its large abundances, it is relatively easy to make observations, and the abundances are often estimated
from ionized HII clouds by using the recombination lines. Since 4He can be produced in stars, the estimates are the
upper bound of the primordial abundances. In order to reduce this contamination, observers often target metal-poor
gas clouds. In reality, observations are made as a function of metalicity, and the helium abundance is estimated
by extrapolating it to zero-metalicity. The current estimate is Yp = 0.24 ± 0.01, but its abundance is relatively
insensitive to η.

• 2D: The deuterium abundance is estimated from UV absorption lines in the interstellar medium or in Lyα clouds at
high redshifts. Since deuterium is rather weakly bound, it is easy to destroy them, but at the same time, it is hard
to produce in stars. Therefore, the deuterium estimates serve as a lower bound. In particular, Lyα clouds at high
redshifts are quite close to primordial. The local estimates give [D/H]≃ 1.6× 10−5, while the estimates from Lyα
clouds yield 2.82± 0.53× 10−5. Since the deuterium abundance sensitively changes with ωb, its measurements are
crucial in determining ωb.

• 3He: The abundance of 3He can be measured by using meteorites and the solar wind in the solar system or by
measuring the strength of the 3He+ hyperfine transition line in HII regions. Old meteorites should contain material
at the formation of the solar system. Since 2D can be burned to 3He in the Sun, the sum of (D+3He) is a good
measure of the pre-solar abundance from the solar wind. While 3He can be destroyed at the core of stars, it is much
harder than 2D. The current measurements from the Solar system give an upper limit on [(D + 3He)/H] < 10−4.

• 7Li: Estimates of the 7Li abundance come from stellar atmospheres. Since 7Li is quite fragile, they are depleted if
transported deeper into the centers of stars, which results in significant variations in observations. With weak con-
vection, the estimates from metal-poor stars are believed to be more robust and close to the primordial abundances.
The current observations yield [7Li/H] ≃ (1.5± 0.4)× 10−10.

With precise determination of Tγ and ωb from CMB measurements, the predictions of BBN are completely fixed
under the standard model of particle physics and cosmology, and they are used for consistency check with observations,
in particular, of the abundances of 4He and 2D. On the other hand, the situation with 3He is too complex for a meaningful
comparison to be possible, and the results for 7Li appear to disagree within uncertainties. This discrepancy reflects
observational challenges in inferring the primordial abundances, but it might imply that the early Universe might have
been different from what the standard model physics predicts.

1.5 Recombination and Matter-Radiation Decoupling

1.5.1 Recombination of Hydrogen Atoms

Once the nucleosynthesis is completed, the Universe consists of protons, helium nuclei, electrons, photons, decoupled
neutrinos, and a trace amount of other elements such as 2D, 3He and so on. All particles except photons and neutrinos
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are already non-relativistic, and they stay in thermal equilibrium mainly through the electromagnetic interactions. As the
Universe cools, the next cosmological event is to form neutral hydrogen atoms by combining free electrons and protons,
which is called the cosmic recombination.

Assuming the thermal equilibrium and µH = µp+µe, we can derive the hydrogen number density in the exactly same
way to Eq. (1.81) as

nH =

(
gH
gpge

)
npne

(
meT

2π

)−3/2
exp

(
BH
T

)
, gH = ge = 2 , gp = 1 , (1.89)

where the binding energy of hydrogen atoms is

BH := mp +me −mH = 13.6 eV . (1.90)

Mind that the degeneracy factor for electrons in neutral hydrogen atoms is gH =
∑

2n2 ≃ 2 and that for ionized protons
is gp = 1. Ignoring helium or any other elements nb ≃ np + nH and assuming ne = np, the hydrogen number density
can be re-expressed as

nH
nb

=

(
ne
nb

)2

η nγ

(
meT

2π

)−3/2
exp

(
BH
T

)
. (1.91)

By defining the ionization fraction (or how many free electrons), we arrive at the Saha equation for the ionization fraction
in thermal equilibrium:

Xe :=
ne
nb

=
np
nb
≤ 1 ,

1−Xe

X2
e

=

√
32

π
ζ(3) η

(me

T

)−3/2
exp

(
BH
T

)
. (1.92)

Once the Universe cools below the binding energy BH , the hydrogen atoms can form, but again due to the large number
of high-energy photons at a given temperature compared to baryons, the formation of neutral hydrogen atoms is further
delayed. If we define the completion of the recombination process as Xe = 10%, the Saha equation states

θ−3/2rec exp

(
13.6

θrec

)
=

0.9

0.01

(√
32

π
ζ(3) η

)−1 ( me

1 eV

)3/2
= 3.2× 1017 (ωb)

−1 , (1.93)

where we defined
θ :=

T

1 eV
≃ 1 + z

4250
. (1.94)

A numerical computation yields that the recombination takes place at

1 + zrec ≈
1367

1− 0.024 lnωb
≈ 1249 , Trec = 0.3 eV≪ BH , (1.95)

a lot lower temperature than BH .
There are a few subtleties in the cosmic recombination. In a typical gas cloud, the recombination process takes place

by a direct capture of free electrons to the ground state (case A recombination) or cascades of electronic transition to the
ground state (case B recombination). Both of which are inefficient in the cosmic recombination, because both processes
result in high energy photons that ionize hydrogen atoms again. The main channel in the cosmic recombination is a
forbidden transition with Γ ≈ 8.23 sec−1, so called, the two-photon decay, in which two photons are emitted by an
electronic transition 2s→ 1s, splitting the energy of Lyα. The other process is the cosmological redshift of Lyα photons.
The detailed numerical computation shows that the ionization fraction Xe = 1 at z ≥ 2000 decreases as the Universe
cools, and it freezes out to a value Xe ≃ 10−3 at z ≤ 200.

1.5.2 Decoupling of CMB Photons and Baryons

• Decoupling of CMB photons.— The baryon-photon plasma (including leptons) maintains the equilibrium via Coulomb
interactions between photons and free electrons. At this low energy scales, the interaction is mainly elastic, and its
cross-section is described by the Thompson scattering as

σT :=
8π

3
r2e ≃ 6.651× 10−25 cm2 , re :=

e2

mec2
= 2.818× 10−13 cm , (1.96)
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where the radius of an electron is defined in terms of the Coulomb potential. The Thompson scattering describes a
classical collision of ionized electrons. With higher mass, the Thompson scattering cross section for protons is smaller by
(me/mp)

2 = 106 and negligible, but the strong Coulomb interactions between free electrons and protons also keep the
protons in thermal equilibrium. As the Universe cools and free electrons recombine to form neutral hydrogen atoms, the
interaction rate in the baryon-photon plasma goes down:

ne = Xe η nγ , Γγ = neσT c = 1.01
√
ωbθ

9/4 exp

[
−6.8

θ

]
sec−1 , (1.97)

and the photons are released (or decoupled) from the plasma, when the interaction rate becomes lower than the expansion
rate:

H ≃ H0

√
Ωm(1 + z)3/2 = 8.98× 10−13

√
ωm θ3/2 sec−1 , (1.98)

where we assumed that the Universe is deep in the matter dominated era. The decoupling takes place at

θ−1dec ≈ 3.927 + 0.074 ln

(
ωb
ωm

)
, Tdec = 0.26 eV , 1 + zdec ≃ 1100 , (1.99)

soon after the recombination of neutral hydrogen atoms takes place. Another way of understanding the decoupling of
photons is to compute the optical depth:

τ(z) :=

∫ z

0
dz

c dt

dz
neσT ≈ 0.37

( z

1000

)14.25
, (1.100)

where the numerical values are approximations to the best-fit model prediction. The Universe is fairly transparent at low
redshift, and it becomes quickly opaque around zdec. A simple analytic calculation shows that the observed CMB photons
are indeed emitted at the peak of the visibility function defined as

P (τ) := τe−τ(z) . (1.101)

which peaks sharply at z ≃ 1067 with a width ∆z ≃ 80. In other words, before the decoupling, the CMB photons were
in thermal equilibrium with baryons via Thompson scattering, and they are un-polarized and opaque. However, within a
narrow redshift width, they are released from the baryon plasma, and they are weakly polarized via last scattering.

• Decoupling of baryons.— Now we consider the decoupling of baryons from the baryon-photon plasma. While the
photons are released at zdec ≃ 1100, the baryons are kept in thermal equilibrium long after the decoupling of photons, due
to large number of photons per baryons. In general, the matter components cool as Tm ∝ 1/a2, faster than the photons,
but because of the tight coupling it goes as Tm ∼ Tγ ∝ 1/a until it is released from the photon plasma, i.e., energy
is transferred to the baryon plasma from the photon plasma by the Compton scattering of high-energy photons. For the
decoupling of photons, the relevant interaction rate was Γγ , and no energy transfer was made. For the decoupling of
baryons, however, we have to account for this energy transfer to compute the proper interaction rate Γe.

The typical average energy transfer due to one Compton scattering of high-energy photons is given by

∆E =
4

3

(ve
c

)2
Ēγ = 4

(
kTe
mec2

)
uγ
nγ

, Ēγ = hν̄ =
uγ
nγ

, (1.102)

and with larger number of photons nγ , the energy transfer rate per unit volume is then

dϵ

dt
= ∆E nγΓγ = 4neσTuγ

(
kTe
mec

)
. (1.103)

Since free electrons are tightly coupled with free protons, this energy transfer is quickly shared with protons of typical
energy density

ϵm =
3

2
(ne + nb)kTe . (1.104)

Therefore, the proper interaction rate for electrons to be compared to the expansion rate is then

Γe =
1

ϵm

dϵ

dt
= 8.9× 10−6

(
Xe

1 +Xe

)
θ4 sec−1 , (1.105)
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and the baryon plasma decouples at

1 + z = 6.8

(
Xe

1 +Xe

)− 2
5

ω1/5
m ≈ 150 . (1.106)

Note that the Compton scattering conserves the number of photons, such that it can lead to a spectral distortion. How-
ever, the small baryon-to-photon ratio makes it negligible for the photon plasma. The free-free emission and absorption
(Bremsstrahlung) can create and destroy photons, such that it is needed to thermalize. However, this process is inefficient
at T ≤ 104 eV.
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2 Newtonian Perturbation Theory

2.1 Standard Newtonian Perturbation Theory

2.1.1 Summary of the Governing Equations

In Newtonian dynamics, fully nonlinear equation pressureless fluid (CDM and baryons) can be written down:

δ̇+
1

a
∇·v = −1

a
∇·(vδ) , ∇·v̇+H∇·v+3H2

2
aΩmδ = −

1

a
∇·[(v · ∇)v] , ∇2ϕ = 4πGρ̄a2δ .

(2.1)
The Euler equation can be split into one for divergence and one for vorticity. The vorticity vector ∇ × v decays at the
linear order. At nonlinear level, if no anisotropic pressure and no initial vorticity, the vorticity vanishes at all orders.
However, in reality, the anisotropic pressure arises from shell crossing, generating vorticity on small scales, even in the
absence of the initial vorticity. Of course, baryons are not exactly pressureless; they form galaxies, and their feedback
effects are also important up to fairly large scales. These all modify the SPT equation.

• regime of validity, measurement precision, analytic vs numerical simulations, galaxy surveys

2.1.2 Basic Formalism

We consider multi-component fluids in the presence of isotropic pressure. In case of n-fluids with the mass densities ϱi,
the pressures pi, the velocities vi (i = 1, 2, . . . n), and the gravitational potential Φ, we have

ϱ̇i +∇ · (ϱivi) = 0 , v̇i + vi · ∇vi = −
1

ϱi
∇pi −∇Φ , ∇2Φ = 4πG

n∑
j=1

ϱj . (2.2)

Assuming the presence of spatially homogeneous and isotropic but temporally dynamic background, we introduce fully
nonlinear perturbations as

ϱi = ϱ̄i + δϱi, pi = p̄i + δpi , vi = Hr+ ui , Φ = Φ̄ + δΦ , (2.3)

where H := ȧ/a, and a(t) is a cosmic scale factor. We move to the comoving coordinate x where

r := a(t)x , ∇ = ∇r =
1

a
∇x ,

∂

∂t
=

∂

∂t

∣∣∣
r
=

∂

∂t

∣∣∣
x
+

(
∂

∂t

∣∣∣
r
x

)
· ∇x =

∂

∂t

∣∣∣
x
−Hx · ∇x .

(2.4)
In the following we neglect the subindex x. To the background order we derive

˙̄ϱi + 3Hϱ̄i = 0 , Ḣ +H2 =
ä

a
= −4πG

3

∑
j

ϱ̄j , H2 =
8πG

3

∑
j

ϱ̄j +
2E

a2
,(2.5)

where the second equation is derived by taking the divergence of the Euler equation and for the third equation we used(
a2H2

)·
= 2a2H

(
H2 + Ḣ

)
,

∑(
a2ϱ̄
)·
= −a2H

∑
ϱ̄ . (2.6)

The integration constant E can be interpreted as the specific total energy in Newton’s gravity; in Einstein’s gravity we
have 2E = −Kc2 where K can be normalized to be the sign of spatial curvature. Note the difference in the background
equation in Newtonian cosmology. The nonlinear governing equations can be expressed in terms of the perturbation
variables as

δ̇i +
1

a
∇ · ui = −

1

a
∇ · (δiui) ,

1

a2
∇2δΦ = 4πG

∑
j

ϱ̄jδj , (2.7)

u̇i +Hui +
1

a
ui · ∇ui = −

1

aϱ̄i

∇δpi
1 + δi

− 1

a
∇δΦ . (2.8)
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By introducing the expansion θi and the rotation −→ω i of each component as

θi := −
1

a
∇ · ui , −→ω i :=

1

a
∇× ui , (2.9)

we derive

θ̇i + 2Hθi − 4πG
∑
j

ϱ̄jδj =
1

a2
∇ · (ui · ∇ui) +

1

a2ϱ̄i
∇ ·
(
∇δpi
1 + δi

)
, (2.10)

−̇→ω i + 2H−→ω i = −
1

a2
∇× (ui · ∇ui) +

1

a2ϱ̄i

(∇δi)×∇δpi
(1 + δi)2

. (2.11)

By introducing decomposition of perturbed velocity into the potential- and transverse parts as

ui := −∇Ui + u
(v)
i , ∇ · u(v)

i ≡ 0 , θi =
∆

a
Ui ,

−→ω i =
1

a
∇× u

(v)
i ,(2.12)

we have

u̇
(v)
i +Hu

(v)
i = −1

a

[
ui · ∇ui +

1

ϱ̄i

∇δpi
1 + δi

−∇∆−1∇ ·
(
ui · ∇ui +

1

ϱ̄i

∇δpi
1 + δi

)]
. (2.13)

Combining equations above, we can derive

δ̈i + 2Hδ̇i − 4πG
∑
j

ϱ̄jδj = −
1

a2
[a∇ · (δiui)]· +

1

a2
∇ · (ui · ∇ui) +

1

a2ϱ̄i
∇ ·
(
∇δpi
1 + δi

)
. (2.14)

These equations are valid to fully nonlinear order. The density fluctuation grows against the Hubble friction. Notice that
for vanishing pressure these equations have only quadratic order nonlinearity in perturbations.

• numerical simulations, baryons

2.1.3 Linear-Order and Second-Order Solutions

We will derive the solutions for a single pressureless medium (now we change notation ui → v; δΦ→ ϕ)

δ̇ +
1

a
∇ · v = −1

a
∇ · (δv) , θ̇ + 2Hθ − 4πGϱ̄δ =

1

a2
∇ · (v · ∇v) , (2.15)

where we now use v to represent the velocity perturbation. These are the governing equation for the cosmologicalN -body
simulations. The calculations are greatly simplified in Fourier space, and our convention is

A(x) ≡
∫

d3k

(2π)3
eik·x A(k) , A(k) ≡

∫
d3x e−ik·x A(x) , (2.16)

and we often use the identity:

δD(k) =

∫
d3x

(2π)3
eik·x . (2.17)

First, we derive the linear-order solution. The conservation equation yields

δ̇(1)(t,k) = θ(1)(t,k) . (2.18)

At the linear order in perturbations, we can separate the time-dependence and the spatial-dependence, i.e., all different
Fourier modes evolve at the same rate, and the growth rate D satisfies

D̈ + 2HḊ − 4πGρ̄mD = 0 , D(t) ≡ D1(t)

D1(t0)
, (2.19)
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where the (dimensionless) growth factor D(t) is normalized to unity at some early epoch t0 when the nonlinearities are
ignored δ(t0,k) := δ

(1)
1 (t0,k) ≡ δ̂(k). The growth eqaution is scale-independent, i.e., the perturbations on all scales

grow at the same rate. In fact, the growth factor can be derived in Eq. (4.176) as

D(t) ∝ c1(k)H(t)

∫
dt

a2H2
+ c2(k)H(t) , (2.20)

where the second term is the decaying mode we will ignore here. The linear-order solution for the density and the velocity
divergence is then

δ(1)(t,k) = D(t)δ̂(k) , θ(1)(t,k) = HfD(t)δ̂(k) , f :=
d lnD

d ln a
, Ḋ ≡ HfD ,

(2.21)
where the superscript indicates the perturbation order, the logarithmic growth rate f is approximately time-independent
and it is unity f = 1 in the matter-dominated era.

To derive the second-order solution, we need to Fourier decompose the source terms in the right-hand side of the
dynamical equation. At the second-order in perturbations, the quadratic terms represent the product of two linear-order
terms. Furthermore, the quadratic product in configuration space becomes the convolution in Fourier space:[

−1

a
∇ · (δv)

](2)
= HfD2

∫
d3Q1

(2π)3

∫
d3Q2

(2π)3
(2π)3δD(k−Q12)

(
1 +

Q1 ·Q2

Q2
1

)
δ̂(Q1)δ̂(Q2) , (2.22){

1

a2
∇ · [(v · ∇)v]

}(2)

= H2f2D2

∫
d3Q1

(2π)3

∫
d3Q2

(2π)3
(2π)3δD(k−Q12)

|Q1 +Q2|2Q1 ·Q2

2Q2
1Q

2
2

δ̂(Q1)δ̂(Q2) ,(2.23)

where we defined Q12 = Q1 +Q2. Using the source functions in Fourier space, we can solve the governing equations
for the density and the velocity divergence as

δ(2)(t,k)

D2
=

∫
d3q1

(2π)3

∫
d3q1

(2π)3
(2π)3δD(k− q12)δ̂(q1)δ̂(q2)

[
5

7
+

2

7

(q1 · q2)
2

q21q
2
2

+
q1 · q2

2q1q2

(
q1
q2

+
q2
q1

)]
,(2.24)

θ(2)(t,k)

HfD2
=

∫
d3q1

(2π)3

∫
d3q1

(2π)3
(2π)3δD(k− q12)δ̂(q1)δ̂(q2)

[
3

7
+

4

7

(q1 · q2)
2

q21q
2
2

+
q1 · q2

2q1q2

(
q1
q2

+
q2
q1

)]
.(2.25)

• HW: derive the second-order solutions

2.1.4 General Solution

Beyond the linear order, the density and the velocity divergence grows in a nonlinear fashion, i.e., different Fourier modes
couple. By assuming the separability of the time and the spatial dependences, the standard perturbation theory (SPT)
takes a perturbative approach to the nonlinear solution:

δ(t,k) :=

∞∑
n=1

Dn(t)

[
n∏
i

∫
d3qi
(2π)3

δ̂(qi)

]
(2π)3δD(k− q12···n)F

(s)
n (q1, · · · ,qn) ≡

∞∑
n=1

Dn(t)δ(n)(k) , (2.26)

θ(t,k)

Hf
:=

∞∑
n=1

Dn(t)

[
n∏
i

∫
d3qi
(2π)3

δ̂(qi)

]
(2π)3δD(k− q12···n)G

(s)
n (q1, · · · ,qn) ≡

∞∑
n=1

Dn(t)θ(n)(k) , (2.27)

where q12···n ≡ q1 + · · · + qn, δ(n)(k) and θ(n)(k) are time-independent n-th order perturbations, F (s)
n and G(s)

n are
the SPT kernels symmetrized over its arguments. With these decompositions in Fourier space, the LHS of the Newtonian
dynamical equations become

δ̇ + θ = Hf

∞∑
n=1

Dn
(
nδ(n) − θ(n)

)
, θ̇ + 2Hθ − 4πGρ̄mδ = H2f2

∑ Dn

2

[
(1 + 2n)θ(n) − 3δ(n)

]
,

(2.28)
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where we utilized the relation between the growth factor and the growth rate Ḋ = HDf . The RHS of the Newtonian
dynamical equations are the convolution in Fourier space:[

−1

a
∇ · (δv)

]
(k) =

∫
d3Q1

(2π)3

∫
d3Q2

(2π)3
(2π)3δD(k−Q12)α12θ(Q1, t)δ(Q2, t) ≡ Hf

∞∑
n=1

DnAn(k) , (2.29)

{
1

a2
∇ · [(v · ∇)v]

}
(k) =

∫
d3Q1

(2π)3

∫
d3Q2

(2π)3
(2π)3δD(k−Q12)β12θ(Q1, t)θ(Q2, t) ≡ H2f2

∞∑
n=1

DnBn(k) , (2.30)

where the vertex functions are defined as

α12 := α(Q1,Q2) ≡ 1 +
Q1 ·Q2

Q2
1

, β12 := β(Q1,Q2) ≡
|Q1 +Q2|2Q1 ·Q2

2Q2
1Q

2
2

, (2.31)

and the n-th order perturbation kernels An(k) and Bn(k) are

An(k) =

[
n∏
i

∫
d3qi
(2π)3

δ̂(qi)

]
(2π)3δD(k− q12···n)

n−1∑
i=1

α12Gi(q1, · · · ,qi)Fn−i(qi+1, · · · ,qn) , (2.32)

Bn(k) =

[
n∏
i

∫
d3qi
(2π)3

δ̂(qi)

]
(2π)3δD(k− q12···n)

n−1∑
i=1

β12Gi(q1, · · · ,qi)Gn−i(qi+1, · · · ,qn) , (2.33)

with Q1 = q1···i and Q1 +Q2 = k.
Therefore, the two Newtonian dynamical equations become algebraic equations with the time-dependence removed:

nδ(n) − θ(n) = An , (1 + 2n)θ(n) − 3δ(n) = 2Bn , (2.34)

and the well-known recurrence formulas for the solutions are

δ(n) =
(1 + 2n)An + 2Bn
(2n+ 3)(n− 1)

, θ(n) =
3An + 2nBn

(2n+ 3)(n− 1)
, (2.35)

and similarly so for the SPT kernels

Fn =
n−1∑
i=1

Gi
(2n+ 3)(n− 1)

[(1 + 2n)α12Fn−i + 2β12 Gn−i] , (2.36)

Gn =
n−1∑
i=1

Gi
(2n+ 3)(n− 1)

[3α12Fn−i + 2nβ12Gn−i] , F1 = G1 = 1 . (2.37)
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3 Probes of Inhomogeneity
In cosmology, the initial condition is set in the early Universe with Gaussian random fluctuations in Fourier space, as the
quantum fluctuations in vacuum are stretched beyond the horizon scales during the inflationary epoch. Since the Gaussian
distribution is completely specified by the variance, the power spectrum contains all the information in the early Universe.
However, the nonlinear growth in the late time complicates the interpretations. Here we focus on the linear theory and
study various ways to measure the two-point statistics.

3.1 Basic Formalism

3.1.1 Two-Point Correlation Function and Power Spectrum

• 3D information.— Suppose that we use some cosmological probes such as galaxies and measure, say, the matter density
fluctuation δ. Now imagine we have measurements of such probe over all positions x. We can then measure the two-point
correlation function ξ(r) and its Fourier transform, the power spectrum P (k):

ξ(r) = ⟨δ(x)δ(x+ r)⟩ =
∫

d3k

(2π)3
eik·rP (k) ,

〈
δ(k)δ(k′)

〉
= (2π)3δ3D(k+ k′)P (k) , (3.1)

and the variance is

σ2 = ξ(0) =

∫
d ln k

k3

2π2
P (k) , ∆2

k :=
k3

2π2
P (k) , (3.2)

where ∆2
k is the dimensionless power spectrum and it is the contribution to the variance per each log k.

Note that different Fourier modes are not correlated in the initial condition and the power spectrum characterizes the
Gaussian distribution at each Fourier mode.1 Therefore, using cosmological probes, we need to measure the distribution
map δ(x) and compute the two-point correlation function or the power spectrum.

• 1D information.— Spectroscopic measurements of distant quasars yield the density fluctuations of neutral hydrogens
along the line-of-sight. In this case, we probe the density fluctuation, but only in terms of the line-of-sight separation, say,
z-direction. Given the 1D map, we can measure the 1D correlation function, and it is related to the power spectrum as

ξ1D(z) = ⟨δ(x)δ(x+ z)⟩ =
∫

d3k

(2π)3
eikzzP3D(k) , (3.3)

where the separation vector is z = zẑ along the line-of-sight direction. We can also define 1D power spectrum that is a
Fourier counterpart of the 1D correlation function:

P1D(kz) ≡
∫
dz e−ikzzξ1D(z) =

∫
d3k′

(2π)3
P (k′)δ1D(k′z − kz) =

∫ ∞
0

dk′∥

2π
k′∥P (k

′
∥, kz) =

∫ ∞
kz

dk

2π
kP (k) , (3.4)

where we again assumed that the 3D power spectrum is isotropic. The 1D power spectrum is the projection of the 3D
power spectrum over 2D Fourier space. For sufficiently high k, it is largely one-to-one, though it has bias (called aliasing)
on low k. This relation can be inverted as

P (k) = −2π

k

d

dk
P1D(k) , (3.5)

and the dimensionless power spectrum in 1D is

σ21D =

∫
d ln kz

kz
π
P1D(kz) , ∆2

k,1D :=
kz
π
P1D(kz) . (3.6)

1However, as we studied in Section 2, the nonlinear evolution results in the mode coupling.
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• 2D information.— Though the distance in cosmology is difficult to measure, it is easy to have 2D information on the
sky. We define the 2D power spectrum in a similar way as the Fourier counterpart of the 2D correlation function:

P2D(kx, ky) ≡
∫
dx

∫
dy e−ikxxe−ikyyξ2D(x, y) =

∫
dk′z
2π

P (kx, ky, k
′
z) =

1

π

∫ ∞
k⊥

dk′
k′P (k′)√
k′2 − k2⊥

, (3.7)

where k2⊥ = k2x + k2y . The 2D power spectrum is the projection over 1D Fourier space, and its similar relation to the 3D
power spectrum exists. This relation can be again inverted by using the (non-trivial) Abell integral as

P (k) = −2

k

∫ ∞
k

dk⊥
P2D(k⊥)√
k2⊥ − k2

, (3.8)

and the dimensionless power spectrum in 2D is then

σ22D =

∫
d ln k⊥

k2⊥
2π

P2D(k⊥) , ∆2
k,2D =

k2⊥
2π
P2D(k⊥) . (3.9)

The projection-slice theorem says Fourier transformation of the projection is the slice of its Fourier transformation. It
means exactly what we derived here. A similar relation holds in configuration space. The projected correlation function
is related as

wp(rp) :=

∫
dz ξ(rp, z) = 2

∫ ∞
rp

dr
ξ(r)√
r2 − r2p

, ξ(r) = − 1

π

∫ ∞
r

drp
wp(rp)√
r2p − r2

. (3.10)

3.1.2 Angular Correlation and Angular Power Spectrum

We briefly covered the statistics in a flat space. However, the sky is round, and we can only make observations by measur-
ing the light signals. The cosmic microwave background anisotropies, for example, are measured only as a function of the
angular position on the sky at the Earth. In cosmology, we often have angular information, but no distance measurements.
Since this measurement δ(θ̂) is defined on a unit sphere, we can decompose it in terms of spherical harmonics as

δ(θ̂) :=
∑
lm

almYlm(θ̂) , alm ≡
∫
d2θ̂ Y ∗lm(θ̂)δ(θ̂) , (3.11)

where we have discrete sum, instead of integral in Fourier space. The reality condition for δ imposes

a∗lm = (−1)mal,−m . (3.12)

Similar to the case in 3D, we can define the angular correlation function and its Fourier counterpart:

w(γ̂) =
〈
δ(θ̂)δ(θ̂ + γ̂)

〉
=
∑
lm

ClYlm(θ̂ + γ̂)Y ∗lm(θ̂) =
∑
l

2l + 1

4π
ClLl(cos γ) , (3.13)

where we used the relation

⟨alma∗l′m′⟩ = δll′δmm′Cl =
∑
m

|alm|2

2l + 1
δll′δmm′ , (3.14)

and the Legendre polynomial is related to the spherical harmonics as

Ll(µ) =
l∑

m=−l

4π

2l + 1
Ylm(θ̂1)Y

∗
lm(θ̂2) , µ = θ̂1 · θ̂2 . (3.15)

The angular power spectrum can be obtained as

Cl = 2π

∫ 1

−1
dµ Ll(µ)w(θ) . (3.16)
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3.1.3 Flat-Sky Approximation

When the area of interest is relatively small in the sky, we can use the flat-sky approximation, and it often overlaps with the
distant-observer approximation, in which the observer is so far away that the position angle is virtually constant, compared
to their relative positions. In this case, the angular correlation and its power spectrum are closely related to those in flat
space.

Now consider the 2D correlation function ξ2D and 2D power spectrum P2D(k):

ξ2D(x, y) =

∫
d2k⊥
(2π)2

eik⊥·x⊥P2D(k⊥) =

∫
d2l

(2π)2
eil·θPl , Pl ≡

1

r2
P2D

(
k⊥ =

l

r

)
, (3.17)

where we used x⊥ = rθ and defined the (flat-sky) angular power spectrum Pl. Note that the 2D power spectrum is di-
mensionful, but the angular power spectrum is dimensionless. Given the radial distance r, the 2D correlation function ξ2D
can be considered as the angular correlation function, and assuming that the angular power spectrum is independent of its
direction, we can further simply the relation:

w(θ) = ξ2D(rθ) =

∫
dl

2π
lPl J0(lθ) , (3.18)

where J0 is the Bessel function. The (full-sky) angular power spectrum is then obtained as

Cl = 2π

∫
dµ Ll(µ)w(θ) ≃

∑
l′

l′Pl′
2δll′

2l + 1
≃ Pl , (3.19)

where we manipulated the Bessel function for l≫ 1 and θ ≪ 1

J0(lθ) =
1

π

∫ π

0
dϕ eilθ cosϕ ≃ 1

π

∫ π

0
dϕ

(
1 +

ilθ cosϕ

l

)l
≃ 1

π

∫ π

0
dϕ (cos θ + i sin θ cosϕ)l = Ll(cos θ) . (3.20)

The angular quantities such as w(θ) and Cl are defined on a unit sphere, whereas the 2D quantities such as ξ2D and P2D

are defined on a 2D flat space. Hence, the former is related to each other via spherical harmonics, and the latter via
Fourier transformation. But they are defined in a way that the angular power spectrum Cl and its flat-sky counterpart Pl
are equivalent in the limit of small sky.

3.1.4 Projection and Limber Approximation

We often measure some angular quantities in cosmology, but they are often the projection of the 3D quantities. For
example, one can measure the angular map in a given galaxy survey, but the angular quantity δ2(θ) we measure indeed
derives from the 3D quantity δ(x), but projected along the line-of-sight direction with some weighting W (r):

δ2(θ) =

∫
dr W (r)δ(x) , x = (rθ, r) . (3.21)

The weight function is normalized to unity and it is often parametrized in terms of redshift as

1 =

∫
dr Wr(r) =

∫
dz Wz(z) , (3.22)

where the weight function can be dimensionful, depending on its parametrization. The angular correlation is then

w(θ) = ⟨δ2(0)δ2(θ)⟩ =
∫
dr1 W (r1)

∫
dr2 W (r2) ξ3D(r) , r ≃ (r1θ, r2 − r1) , (3.23)

where we assumed the flat-sky approximation. The angular power spectrum is

Pl =

∫
d2θ

(2π)2
e−il·θw(θ) =

∫
dr1 W (r1)

∫
dr2 W (r2)

∫
dkz
2π

e−ikz(r2−r1)
1

r21
P

[(
k⊥ =

l

r1
, kz

)]
. (3.24)
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Since we work in the flat-sky regime (or the distant observer), the radial distance is far larger than the transverse separation
r ≫ rθ. Hence, we have the separation of scale in Fourier space

k⊥ =
l

r
≃ 1

rθ
≫ 1

r
≃ kz , (3.25)

and the power spectrum can be approximated as

P (k) ≃ P (k = k⊥) +
dP

dkz
kz +O(kz)2 ,

dP

dkz
kz =

dP

dk

k2z
k
≃ P

k2r2
≃ P

l2
≪ P . (3.26)

Keeping the leading term in the power spectrum, we can integrate over kz and approximate the angular power spectrum
as

Pl ≃
∫
dr
W 2(r)

r2
P

[(
k⊥ =

l

r1
, kz

)]
. (3.27)

This is sometimes called the Limber approximation. When the window function is sufficiently broad compared to the
coherent length scale of the correlation, the Limber approximation is very accurate and useful. Its relation to the angular
correlation is

w(θ) =

∫
dl

2π
lPl J0(lθ) ≡

∫
dk kP (k)F (k, θ) , (3.28)

where we defined the kernel

F (k, θ) :=

∫
dr

2π
W 2(r)J0(krθ) =

1

k

∫
dl

2π
W 2

(
l

k

)
J0(krθ) . (3.29)

3.2 Matter Power Spectrum

The evolution equation (2.19) for the matter density growth yields simple solutions for the matter-dominated era (MDE)
and the radiation-dominated era (RDE):

Dmde ∝ a , Drde ∝ a2 , (3.30)

where the solution can be verified by direct substitutions. The growth in MDE is scale-independent, such that the pertur-
bations on all scales grow equally in proportion to a. However, the growh in RDE is a bit different. In fact, the evolution
equation is not valid in RDE, as we derived the equation by assuming the presureless medium, whereas the Universe in
RDE is dominated by radiation (with large pressure). On small scales, the matter density cannot grow due to the radiation
pressure, so no growth during the RDE, but on large scales (larger than the horizon scale in RDE) the evolution equation
is valid, as the effect of pressure is negligible.2

Therefore, the matter density fluctuations on large scales can continuously growh throughout the periods of RDE and
MDE, while those on small scales cannot grow, once they enter the horizon during RDE (remember that all modes were
outside the horizon after inflation). So the scale of comparison is naturally the equality scale kEQ, where the epoch of
equality is defined as ρ̄m = ρ̄r at tEQ (or zEQ ≃ 3000). The modes larger than the equality scale kA < kEQ stay outside
the horizon during RDE, so that they continue to grow until today:

δ(kA; t0) = δ(kA; ti)

(
aEQ
ai

)2( a0
aEQ

)
, (3.31)

where ti is the initial time after inflation and t0 is the present time. Similarly for the mode kEQ, and hence the ratio of the
power spectra at kA and kEQ is

P (kA; t0)

P (kEQ; t0)
=

[
P (kA)

P (kEQ)

]
ti

=

(
kA
kEQ

)ns
. (3.32)

For a mode kA < kEQ, the power spectrum is essentially primordial, up to the amplitude.

2For calculations outside the horizon, we need relativistic equations, so the validity of our Newtonian equation in this regime is a bit of coincident.
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The modes smaller than the equality scale kB > kEQ start outside the horizon during RDE and grow for some time.
However, after they enter the horizon during RDE, their growth freezes, until the Universe becomes MDE, so that their
growth is

δ(kB; t0) = δ(kB; ti)

(
a⋆
ai

)2( a0
aEQ

)
, (3.33)

where a⋆ is the time at which the modes kB enter the horizon, i.e., kB = H(t⋆). During RDE, the Hubble parameter H is
proportional to a−2, and the conformal Hubble parameter H := aH . Therefore, the scale factor at the horion crossing is
a⋆ ∝ 1/kB , and the ratio of the power spectra at kB and kEQ is then

P (kB; t0)

P (kEQ; t0)
=

[
P (kB)

P (kEQ)

]
ti

(
a⋆
aEQ

)4

=

(
kB
kEQ

)ns−4
. (3.34)

Compared to the initial condition, the growth in the matter power spectrum is suppressed on small scales due to the
radiation pressure.

In fact, the dark matter density can still grows in RDE on small scales, as they do not feel the radiation pressure.
However, the growth is indeed slowed due to the rapid Hubble expansion in RDE, so that the growth is only logarithmic,
and the suppression on small scales is in fact (ln k/k2)2, instead of (1/k2)2. This growth of dark matter density during
RDE is important for structure formation today. CMB observations show that δT/T̄ ∼ δb ∼ 10−5 at z = 1100. According
to linear theory, this small matter density fluctuation can only grow by D(z = 1000)/D(z = 0) ≈ 1000 to δb ∼ 0.01,
which is not enough to form any nonlinear structure today. With dark matter already growing for a while, baryons can
catch up quickly, once released from CMB.

3.3 Peculiar Velocity

3.3.1 Observations of Peculiar Velocities

The distant objects such as galaxies are receding from us due to the Hubble expansion, and this expansion (or the receding
velocity v) is measured by the redshift z of the known line-emissions from the distant objects:

1 + z =
λobs
λrest

. (3.35)

If we interpret this measurement as the Doppler effect, we obtain the receding velocity

1 + z ≈ 1± v

c
, v ≡ cz . (3.36)

What happen to the objects at z > 1? We can use the relativistic Doppler effect to obtain the receding velocity less than
the speed of light, but this velocity is not really the physical velocity of the objects. The dominant contribution to the
redshift is indeed the expansion of the Universe.

However, in addition to the Hubble expansion vH , these objects are also moving, and this motion is referred to as
the peculiar motion vp. Due to the peculiar motion, the Doppler effect also contributes to the receding velocity, and the
receding velocity can be written as

v = vH + vp , vH = Hd = Hr , (3.37)

where the object is assumed to be at the physical distance d (or comoving distance r). The redshift measurements (or
the receding velocity) yield only the radial component of the receding velocity. The tangential peculiar motion can be
measured. However, since this requires measurements of the angular motion of the distant objects over a long time, it is
practically limited to the nearby objects such as stars in our own Galaxy. The measurements of the radial peculiar velocity
also requires precise measurements of the distance d, which is very difficult in cosmology. For example, 10% error in the
distance measurements at d = 50 h−1Mpc yields the error of 500 km s−1 in the peculiar velocity measurement. There-
fore, the peculiar velocity measurements are also limited to the low-redshift objects.

• receding velocity at z > 1, gauge ambiguity, SN Ia or SZ measurements
• HW: derive Eq. (3.36) from Eq. (3.37)
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3.3.2 Linear Theory

In Chapter 2, we learned that the velocity divergence is related to the density fluctuation:

θ ≡ −1

a
∇ · v = Hfδ . (3.38)

Ignoring the vector perturbation, the velocity can be expressed in terms of the velocity potential U as

v = −∇U , θ =
1

a
∆U , U = Hf∆−1δ , v = −Hf∇∆−1δ . (3.39)

In Fourier space, the inverse Laplacian can be readily manipulated, and the velocity vector becomes

U(k) = −Hf
k2

δ(k) , v(k) = ik
Hf
k2

δ(k) , (3.40)

where we suppressed the time-dependence, for example,

δ(k) = D(t)δ̂(k, to) . (3.41)

3.3.3 Two-Point Correlation of the Peculiar Velocities

Given the peculiar velocity (vector) field, we can compute the two-point correlation function of the peculiar velocities at
two different points:

Ψij(r) = ⟨vi(x)vj(x+ r)⟩ =
∫

d3k

(2π)3
eik·r H2f2Pm(k)

kikj
k4
≡ Ψ⊥(r)(δij − r̂ir̂j) + r̂ir̂jΨ∥(r) , (3.42)

where r̂i = ri/|r|, the matter density power spectrum is〈
δ(k)δ(k′)

〉
= (2π)3δD(k+ k′)Pm(k) , (3.43)

and we defined two velocity correlation functions, Ψ∥ along the connecting direction and Ψ⊥ perpendicular to it:

Ψ⊥ :=

∫
dk

2π2
H2f2P (k)

j1(kr)

kr
, Ψ∥ :=

∫
dk

2π2
H2f2P (k)

[
j0(kr)−

2j1(kr)

kr

]
=

d

dr
[rΨ⊥(r)] , (3.44)

where we used ∫
dµ e±iµx = 2j0(x) ,

∫
dµ µ2 e±iµx = 2j0(x)−

4j1(x)

x
. (3.45)

If we define the multipole correlation function of the matter as

ξnl (x) :=

∫
dk

2π2
knjl(kx)Pm(k) , (3.46)

we can show that the velocity correlation functions are

Ψ∥ ∝
1

3

(
ξ00 − 2ξ02

)
, Ψ⊥ ∝

1

3

(
ξ00 + ξ02

)
. (3.47)

The two-point correlation function of the velocity inner product is then

⟨v(x) · v(x+ r)⟩ = Ψ∥(r) + 2Ψ⊥(r) , (3.48)

and its variance is
σ23D ≡ ⟨v(x) · v(x)⟩ =

∫
dk

2π2
H2f2P (k) . (3.49)

Since the peculiar velocity is often measured along the line-of-sight direction only, one-dimensional variance is often used
in literature:

σ21D =
1

3
σ23D . (3.50)

For the same reason, the two-point correlation function of the line-of-sight velocities is often measured, and it is related
to the velocity correlation Ψij as

⟨V1V2⟩ = n̂1in̂2jΨij , V1 := n̂i1vi(x1) , n̂1 = x1/|x1| , (3.51)

where n̂1 is the line-of-sight direction for the position x1.
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3.4 Redshift-Space Distortion

3.4.1 Redshift-Space Power Spectrum

In cosmology, we rarely know the physical distance to any of the cosmological objects, but we can measure their redshift z
with relative ease. The redshift-space distance s is then assigned to the object as

s =

∫ z

0

dz′

H
. (3.52)

As we discussed in Section 3.3.1, the observed redshift is the sum of the Hubble expansion and the peculiar velocity.
However, since it is measured in terms of wavelength, it is more convenient to express it as

1 + z ≡ (1 + z̄) (1 + δz) , z = z̄ + (1 + z̄)δz , (3.53)

where the redshift z̄ in the background would represent the comoving distance to the object in the background

r =

∫ z̄

0

dz′

H
, d =

r

1 + z̄
, (3.54)

and the peculiar velocity or any contributions to the observed redshift other than the Hubble expansion is described by the
perturbation δz:

δz = vp + · · · . (3.55)

To the linear order in perturbations, we can expand the redshift-space distance as

s ≃ r + 1 + z

H
δz = r + V , V :=

vp
H

= −f ∂
∂r

∆−1δ , (3.56)

where we replaced z̄ with z at the linear order. Despite the distortion in the radial distance, the number of galaxies
we measure in a given area of the sky remains unaffected: ng(s)d

3s = ng(r)d
3r. Therefore, the observed galaxy

fluctuation δs in redshift-space is related to the real-space fluctuation δg as

1 + δs =
ng(r)

ng(s)

∣∣∣∣d3sd3r
∣∣∣∣−1 = r2n̄g(r)

s2n̄g(s)

(
1 +

dV
dr

)−1
(1 + δg) . (3.57)

This relation is exact but assumes that the redshift-space distortion is purely radial, ignoring angular displacements.
One can make a progress by expanding equation (3.57) to the linear order in perturbations, and the redshift-space

galaxy fluctuation is then

δs = δg −
(
d

dr
+
α

r

)
V , (3.58)

where the selection function α is defined in terms of the (comoving) mean number density n̄g of the galaxy sample as

α :=
d ln r2n̄g
d ln r

= 2 +
rH

1 + z

d ln n̄g
d ln(1 + z)

. (3.59)

By adopting the distant-observer approximation (r →∞) and ignoring the velocity contributions, a further simplification
can be made:

δs ≃ δg −
dV
dr

=

∫
d3k

(2π)3
eik·s (b+ fµ2k) δm(k) , (3.60)

where we used the linear bias approximation δg = b δm and the cosine angle between the Fourier mode and the line-of-
sight direction is µk = ŝ · k̂. The galaxy power spectrum in redshift-space is then readily computed as

Ps(k, µk) = (b+ fµ2k)
2Pm(k) . (3.61)

This redshift-space distortion effect was first derived by Nick Kaiser in 1987. Due to our redshift measurements as the
radial distance, the Doppler effect affects our observation of the number density in redshift-space, such that the galaxy
power spectrum becomes enhanced along the line-of-sight direction, representing the infall toward the overdense region.

• random motion on small scales, growth rate of structure
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3.4.2 Multipole Expansion

The Kaiser formula for the redshift-space power spectrum indicates that the power spectrum is anisotropic, i.e., it depends
not only a Fourier mode k, but also its direction. So, it is often convenient to expand Ps(k, µk) in terms of Legendre
polynomials Ll(x) as

Ps(k, µk) =
∑
l=0,2,4

Ll(µk)P
s
l (k) , (3.62)

and the corresponding multipole power spectra are

P sl (k) =
2l + 1

2

∫ 1

−1
dµk Ll(µk)Ps(k, µk) . (3.63)

With its simple angular structure, the simple Kaiser formula in equation (3.61) is completely described by three multipole
power spectra

P s0 (k) =

(
b2 +

2fb

3
+
f2

5

)
Pm(k) , P s2 (k) =

(
4bf

3
+

4f2

7

)
Pm(k) , P s4 (k) =

8

35
f2Pm(k) ,

(3.64)
while any deviation from the linearity or the distant-observer approximation can give rise to higher-order even multipoles
(l > 4) and deviations of the lowest multipoles from the above equations.

The correlation function in redshift-space is the Fourier transform of the redshift-space power spectrum Ps(k, µk).
With the distant-observer approximation the redshift-space correlation function can be computed and decomposed in
terms of Legendre polynomials as

ξs(s, µ) =

∫
d3k

(2π)3
eik·s Ps(k, µk) =

∑
l=0,2,4

Ll(µ) ξ
s
l (s) , (3.65)

and the multipole correlation functions are related to the multipole power spectra as

ξsl (s) = il
∫
dk k2

2π2
P sl (k)jl(ks) , (3.66)

P sl (k) = 4π(−i)l
∫

dx x2ξsl (x)jl(kx) , (3.67)

where jl(x) denotes the spherical Bessel functions and the cosine angle between the line-of-sight direction n̂ and the pair
separation vector s is µ = n̂ · ŝ. With the distant-observer approximation, there are no ambiguities associated with how to
define the line-of-sight direction of the galaxy pair, as all angular directions are identical.

3.5 Galaxy Clusters

So far, we discussed the two-point statistics of some cosmological probes. One-point statistics such as the number density
has also important cosmological information.

3.5.1 Spherical Collapse Model

A simple spherical collapse model was developed long time ago to serve as a toy model for dark matter halo formation.
The idea is that a slightly overdense region in a flat universe evolves as if the region were a closed universe, such that it
expands almost together with the background universe but eventually turns around and collapses. The overdense region
described by the closed universe would collapse to a singularity, but in reality it virializes and stops contracting. By using
the analytical solutions for the two universes, we can readily derive many useful relations about the evolution of such
overdense regions.
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Einstein-de Sitter Universe

A flat homogeneous universe dominated by pressureless matter is called the Einstein-de Sitter Universe:

H2 =
8πG

3
ρm , ρm :=

ρ0
a3

, (3.68)

where the reference point t0 satisfies a(t0) = 1. This simple model is indeed a good approximation to the late Universe,
before dark energy starts to dominate the energy budget. The evolution equations and the solution are

a :=

(
t

t0

)2/3

=

(
η

η0

)2

,
t

t0
=

(
η

η0

)3

, η0 = 3t0 , (3.69)

H =
2

3t
, H =

2

η
, ρm =

1

6πGt2
, r = η0 − η =

2

H0

(
1− 1√

1 + z

)
, (3.70)

where the reference time can be any time t0 ∈ (0,∞). At a given epoch t0, one can define a mass scale

M :=
4π

3
ρ0 =

H2
0

2G
=

2

9Gt20
, ρ0 =

1

6πGt20
, H0 =

2

3t0
. (3.71)

Closed Homogeneous Universe

An analytic solution can be derived for a closed universe with again pressureless matter. The evolution equations for a
closed universe and their solution are parametrized in terms of θ as

ã := ãt
1− cos θ

2
, t := tt

θ − sin θ

π
, dη =

dt

ã
=

2tt
πãt

dθ , θ ∈ [0, 2π] , (3.72)

H̃ =
1

ã

dã

dθ

(
dt

dθ

)−1
=
π

tt

sin θ

(1− cos θ)2
, H̃2 =

8πG

3
ρ̃m −

K

ã2
=
K

ã2

(
ãt
ã
− 1

)
, (3.73)

∴ K =
π2ã2t
4t2t

, ρ̃m =
3Kãt
8πG

1

ã3
=:

ρ0
ã3

, t =
ãt(θ − sin θ)

2
√
K

, dη =
ãt√
K
dθ ,(3.74)

where we used tilde to distinguish quantities in the closed universe from the flat universe and the maximum expansion (or
turn-around ãt) is reached at θ = π (H̃t = 0). The density parameters are related to the curvature K of the universe as

K =
8πG

3

ρ0
ãt

=
H2

0

ãt
=

4

9t20ãt
, ∴

16

9

(
tt
πt0

)2

= ã3t . (3.75)

Note that we used the same ρ0 for ρ̃m to simplify the calculation, but it retains the full generality (mind that ã ̸= 1 at t0).

Spherical Collapse Model

The time evolution of the overdense region can be derived in a non-perturbative way as

1 + δ =
ρ̃m
ρm

=
(a
ã

)3
=

9

2

(θ − sin θ)2

(1− cos θ)3
→ 1 at θ = 0 , (3.76)

where we used

a3 =

(
t

t0

)2

=

(
tt
πt0

)2

(θ − sin θ)2 , ã3 =

(
ãt
2

)3

(1− cos θ)3 =
2

9

(
tt
πt0

)2

(1− cos θ)3 . (3.77)

The density contrast vanishes at θ → 0, which implies that ρm = ρ̃m only at θ → 0 (or t→ 0). The density contrast δt at
its maximum expansion

1 + δt =
9π2

16
≃ 5.6 , (3.78)

is about a few, while the density contrast δv at its virialization

1 + δv = 18π2 ≃ 177.7 , (3.79)
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is a few hundreds, under the assumption that the overdensity region virialized at the half of its maximum expansion. Note
that the universe further expands and the background density is reduced by factor 4, until it collapses at tv = 2tt (or
θ = 2π).

Finally, expanding the expressions to the linear order

a =
1

361/3

(
tt
πt0

)2/3

θ2 + · · · , δ =
3

20
θ2 + · · · , (3.80)

and evaluating the linear order expressions at θi for ai and δi, we first compute

δi
ai

=
3

20
361/3

(
tt
πt0

)−2/3
+ · · · , (3.81)

and the density contrast linearly extrapolated to late time and its value at virialization are then derived as

δL =
D

Di
δi =

a

ai
δi =

3

10

(
9

2

)1/3

(θ − sin θ)2/3 , D ∝ a . (3.82)

This equation implies that at the time of collapse the density contrast δL is

δv ≃ 1.686 . (3.83)

For |δ| ≪ 1, we derive the relation

δ = δL +
17

21
δ2L +

341

567
δ3L +

55805

130977
δ4L + · · · , δL = δ − 17

21
δ2 +

2815

3969
δ3 − 590725

916839
δ4 + · · · . (3.84)

Biased Tracer

For any biased tracer δX , the Eulerian and the Lagrangian bias parameters can be written in a series

δX =
∞∑
n=1

bn
n!
δn , δLX =

∞∑
n=1

bLn
n!
δnL , (3.85)

where the superscript L represents quantities in the Lagrangian space. If the number density of the objects X is conserved

ρ d3x = ρ̄ d3q , ρX d3x = ρLX d3q , ∴ 1 + δX = (1 + δ)(1 + δLX) , (3.86)

the bias parameters are related as

b1 = bL1+1 , b2 = bL2+
8

21
bL1 , b3 = bL3−

13

7
bL2−

796

1323
bL1 , b4 = bL4−

40

7
bL3+

7220

1323
bL2+

476320

305613
bL1 . (3.87)

This simple relation owes to the fact that the spherical collapse model is local in both Eulerian and Lagrangian spaces.

3.5.2 Dark Matter Halo Mass Function

Given the simple spherical collapse model, we would like to associate the collapsed region with some virialized objects
like massive galaxy clusters or dark matter halos. Of our main interest is then the number density of such objects in a
mass range M ∼M + dM , and this is called the mass function.

A simple model called, the excursion set approach, was developed: One starts with a smoothing scale R and its
associated mass M . The density fluctuation δR after smoothing with R is very small (δR = 0, if R = ∞), and this
region has never reached the critical density threshold δc in its entire history. This implies that there is no virialized object
associated with such mass. One then decreases the smoothing scale (or mass), and looks for the collapsed probability:
Some overdense regions have at some point in the past reached the critical density, while some underdense regions have
not. Therefore, the total fraction Fc of collapse can be obtained by using the survival probability Ps of a given scale, and
it is related to the mass function as

Fc = 1−
∫ δc

−∞
dδ Ps =

∫ ∞
M

dM
dn

dM

M

ρ̄m
, ∴

dn

dM
=
ρ̄m
M

(
−∂Fc
∂M

)
≡ ρ̄m
M

f(ν)
d ln ν

dM
, (3.88)
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where it is assumed that the mass function only depends on mass and we defined the multiplicity function f through the
relation

ν ≡ δc(z)

σ(M)
,

∫ ∞
0

dν

ν
f = 1 . (3.89)

The task of obtaining the mass function boils down to computing the survival probability and expressing it in terms
of the multiplicity function. The way to find the survival probability at a given mass scale M is to derive the evolution of
the density fluctuation as we decrease the smoothing scale R. The reason is that the region may have already collapsed at
a larger mass scale or smoothing scale, and this contribution should be removed in computing the survival probability at
a lower mass scale. The survival probability at n-th step depends on the entire history of the trajectory (non-Markovian
process) as

Ps(δn, σn)dδn = dδn

∫ δc

−∞
dδn−1 · · ·

∫ δc

−∞
dδ1 Ps(δ1, · · · δn, σ1, · · · , σn) , (3.90)

it is notoriously difficult to solve, even numerically. However, once we assume that the fluctuations are independent at
each smoothing and are Gaussian distributed (true only in Fourier space at linear order), the trajectory only depends on
the previous step (Markovian process) and the survival probability becomes

Ps(δn, σn) =

∫ δc

−∞
dδn−1Pt(δn, σn|δn−1, σn−1) Ps(δn−1, σn−1) , (3.91)

where the transition probability Pt is nothing but a conditional probability. With the boundary condition Ps = 0 at δ = δc,
the solution is (derived by Chandrasekhar for other purposes)

Ps =
1√
2πσ

exp

(
− δ2

2σ2

)
− 1√

2πσ
exp

[
−(2δc − δ)2

2σ2

]
. (3.92)

The survival probability for its simplest case is described by a Gaussian distribution, but the second term reflects that there
exist equally likely trajectories around the threshold that have reached the threshold in the past. The collapsed fraction is

Fc = 1− 1

2
erf

(
νc√
2

)
− 1

2
erf

(
νc√
2

)
= erfc

(
νc√
2

)
, (3.93)

and the multiplicity function is

f(ν) =

√
2

π
ν e−ν

2/2 . (3.94)

Of course, this model relies on many approximations, and it is not accurate. However, it provides physical intuitions,
connecting the complicated formation of galaxy clusters and the dynamical evolution of the matter density fluctuations.
In general, numerical N -body simulations are run, and dark matter halos are identified by using some algorithm such as
the friends-of-friends method or its variants to derive the mass function from the simulations.
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4 Relativistic Perturbation Theory

4.1 Metric Decomposition and Gauge Transformation

4.1.1 FRW Metric and its Perturbations

We describe the background for a spatially homogeneous and isotropic universe with the FRW metric

ds2 = gµνdx
µdxν = −a2(η) dη2 + a2(η) ḡαβ dx

αdxβ , (4.1)

where a(η) is the scale factor and ḡαβ is the metric tensor for a three-space with a constant spatial curvature K =
−H2

0 (1 − Ωtot). We use the Greek indices α, β, · · · for 3D spatial components and µ, ν, · · · for 4D spacetime compo-
nents, respectively. To describe the real (inhomogeneous) universe, we parametrize the perturbations to the homogeneous
background metric as

g00 := −a2 (1 + 2A) , g0α := −a2Bα, gαβ := a2 (ḡαβ + 2Cαβ) , (4.2)

where 3-tensor A, Bα and Cαβ are perturbation variables and they are based on the 3-metric ḡαβ . Due to the symmetry of
the metric tensor, we have ten components, capturing the deviation from the background. The inverse metric tensor can
be obtained by using gµρgρν = δµν and expanding to the linear order as

g00 =
1

a2
(−1 + 2A) , g0α = − 1

a2
Bα , gαβ =

1

a2

(
ḡαβ − 2Cαβ

)
. (4.3)

For later convenience, we also introduce a time-like four-vector, describing the motion of an observer (−1 = uµu
µ):

u0 =
1

a
(1−A) , uα :=

1

a
Uα , u0 = −a (1 +A) , (4.4)

uα = a (Uα −Bα) := a vα := a(−v,α + v(v)α ) , v := U + β , v(v)α = U (v)
α −B(v)

α , (4.5)

where Uα is again based on ḡαβ .

4.1.2 Scalar-Vector-Tensor Decomposition

Given the splitting of the spatial hypersurface and the symmetry associated with it, we decompose the perturbation vari-
ables (to all orders) as

A := α , Bα := β,α +B(v)
α , Cαβ := φḡαβ + γ,α|β + C

(v)
(α|β) + C

(t)
αβ , Uα := −U ,α + U (v)α , (4.6)

subject to the transverse and traceless conditions:

B
(v)α
|α ≡ 0 , C

(v)α
|α ≡ 0 , v

(v)α
|α ≡ 0 , C(t)α

α ≡ 0 , C
(t)β
α|β ≡ 0 , U (v)α

|α = 0 , (4.7)

where the vertical bar represents the covariant derivative with respect to the 3-metric ḡαβ:

Xα
|β = Xα

,β + Γ̄αβγX
γ , Xα|β = Xα,β − Γ̄γαβXγ . (4.8)

This simply implies that the scalar perturbations describe the longitudinal modes and the vector (v) and the tensor (t)
perturbations describe the transverse modes. Furthermore, the tensor perturbation is traceless. The decomposed scalar
perturbations can be obtained as

β = ∆−1∇αBα , γ =
1

2

(
∆+

1

2
R̄

)−1 (
3∆−1∇α∇βCαβ − Cαα

)
, (4.9)

φ =
1

3
Cαα −

1

6
∆

(
∆+

1

2
R̄

)−1 (
3∆−1∇α∇βCαβ − Cαα

)
,
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where ∇α is the covariant derivative based on ḡαβ (i.e., vertical bar) and ∆ = ∇α∇α is the Laplacian operator. The
presence of the Ricci scalar (R̄ = 6K) for the three-space indicates that covariant derivatives are non-commutative.

R̄αβγδ = 2K ḡα[γ ḡδ]β . (4.10)

The decomposed vector and tensor components are computed in a similar manner as

B(v)
α = Bα −∇α∆−1∇βBβ , C(v)

α = 2

(
∆+

1

3
R̄

)−1 [
∇βCαβ −∇α∆−1∇β∇γCβγ

]
, (4.11)

C
(t)
αβ = Cαβ −

1

3
Cγγ ḡαβ −

1

2

(
∇α∇β −

1

3
ḡαβ∆

)(
∆+

1

2
R̄

)−1 [
3∆−1∇γ∇δCγδ − Cγγ

]
−2∇(α

(
∆+

1

3
R̄

)−1 [
∇γCβ)γ −∇β)∆−1∇γ∇δCγδ

]
,

and they satisfy the transverse condition B(v)α
|α = C

(v)α
|α = C

(t)β
α|β = 0 and the traceless condition C(t)α

α = 0.

4.1.3 Comparison in Notation Convention

Bardeen convention:

A→ α , B(0) → −kβ , HL → φ+
1

3
∆γ , HT → −∆γ , (4.12)

B(1)Q(1)
α → Bα , H

(1)
T Qα → −kCα , H

(2)
T Qαβ → Cαβ . (4.13)

Weinberg convention:

Φ→ αχ , Ψ→ −φχ , δu→ −avχ R → φv , ζ → φδ , (4.14)

δp→ δp− 1

3a2
∆Π , πS := δσ → Π

a2
, πVi →

1

2a
Πα , πTij → Π

(t)
αβ . (4.15)

Dodelson convention:
ψ → αχ , ϕ→ φχ , ikv → k2vχ , v → −ikvχ . (4.16)

Ma & Bertschinger:

ψ → αχ , ϕ→ −φχ , h→ 6φv + 2∆γ , η → −φv , θ → k2vχ . (4.17)

CLASS Boltzmann code:
ψ → αχ , ϕ→ −φχ , θ → k2v , (4.18)

where θi and δi depend on the choice of gauge condition.

4.1.4 Gauge Transformation

The general covariance of general relativity guarantees that any coordinate system can be used to describe the physics
and it has to be independent of coordinate systems. This is known as the diffeomorphism symmetry in general relativity.
However, when we split the metric into the background and the perturbations around it by choosing a coordinate system,
we explicitly change the correspondence of the physical Universe to the background homogeneous and isotropic Universe.
Hence, the metric perturbations transform non-trivially (or gauge transform), and the diffeomorphism invariance implies
that the physics should be gauge-invariant.

The gauge group of general relativity is the group of diffeomorphisms. A diffeomorphism corresponds to a differen-
tiable coordinate transformation. The coordinate transformation on the manifoldM can be considered as one generated
by a smooth vector field ζµ. Given the vector field ζµ, consider the solution of the differential equation

dχµ(λ)

dλ

∣∣∣∣
P

= ζµ [χνP (λ)] , χµP (λ = 0) = xµP ,
d

dλ
= ζµ∂µ , (4.19)
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defines the parametrized integral curve xµ(λ) = χµP (λ) with the tangent vector ζµ(xP ) at P . Therefore, given the vector
field ζµ onM we can define an associated coordinate transformation onM as xµP → x̃µP = χµP (λ = 1) for any given P .
Assuming that ζµ is small one can use the perturbative expansion for the solution of equation to obtain

x̃µP = χµP (λ = 1) = χµP (λ = 0) +
d

dλ
χµP

∣∣∣∣
λ=0

+
1

2

d2

dλ2
χµP

∣∣∣∣
λ=0

+ · · · = xµP + ζµ(xP ) +
1

2
ζµ,νζ

ν +O(ζ3) = eζ
ν∂νxµ .

(4.20)
This parametrization corresponds to the gauge-transformation with ζµ.

In general, any gauge-transformation of tensor T for an infinitesimal change ζ can be expressed in terms of the Lie
derivative (valid to all orders of T)

δζT := T̃−T = −£ζT+O(ζ2) , £ζA
µ = Aµ,νζ

ν−ζµ,νAν , £ζTµν = Tµν,ρζ
ρ+Tρνζ

ρ
,µ+Tµρζ

ρ
,ν , (4.21)

where they are all evaluated at the same coordinate and the derivatives in the Lie derivatives can be replaced with covariant
derivatives (Lie derivatives are tensorial). To all orders in ζ, we have

T̃(x) = T(x)−£ζT+
1

2
£2
ζT+ · · · = exp [−£ζ ]T . (4.22)

Therefore, the gauge-transformation in perturbation theory is simply

δζT̄ = 0 , δζT
(1) = −£ζT̄ , δζT

(n) = −£ζT
(n−1) , (4.23)

where we used that ζ is also a perturbation.
In fact, there are two ways of looking at the transformation in perturbation theory. For example, the metric tensor has

to transform as a tensor. But once we split it into the background and the perturbations, there exist two ways

gµν = ḡµν + hµν , δζg = −£ζg : (1) δζ ḡ = −£ζ ḡ , δζh = −£ζh , (2) δζ ḡ = 0 , δζh = −£ζh−£ζ ḡ ,
(4.24)

where we suppressed the tensor indices. In (1), the background and the perturbation transform altogether like tensors (at
the same coordinates), such that the sum transforms like a tensor. In perturbation theory, we do not use this, because
the infinitesimal transformation ζ is always considered as a perturbation. However, for example we can consider some
general spatial rotation ζ, such that the background metric also changes.1

4.1.5 Linear-Order Gauge Transformation

At the linear order, the Lie derivative is trivial, and the the most general coordinate transformation in Eq. (4.20) becomes

x̃µ = xµ + ξµ , ξµ := (T,Lα) , Lα := L,α + L(v)α , (4.25)

where we now use ξµ = ζµ. The transformation of the metric tensor at the leading order in ξ is then

δξgµν(x) := g̃µν(x)− gµν(x) = −£ξgµν = − (ξµ;ν + ξν;µ) , ξµ = gµνξ
ν = a2(−T, Lα) , (4.26)

where the semi-colon represents the covariant derivative with respect to the full metric gµν . The transformation equations
are explicitly

δξg00 = −2a2 δξA = 2a2
[
1

a
(aT )′

]
, δξg0α = −a2 δξBα = a2

(
T,α − L′α

)
, (4.27)

δξgαβ = 2a2 δξCαβ = −2a2
[
HT ḡαβ + L(α|β)

]
. (4.28)

Using the scalar-vector-tensor decomposition, we derive that the scalar quantities gauge-transform as

α̃ = α− 1

a
(aT )′ , β̃ = β − T + L′ , φ̃ = φ−HT , γ̃ = γ − L , (4.29)

Ũ = U − L′ , ṽ = v − T , χ̃ = χ− aT , κ̃ = κ+ 3ḢaT +
∆

a
T , (4.30)

1In FRW, we use the spatial metric ḡαβ unspecified, implying we can do a further spatial transformation to e.g., spherical coordinate and so on
and change the background metric (while it remains covariant). The time component is fixed, otherwise it ruins the FRW symmetry (g0α component
in the background or different coefficient in time component for example.
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the vector metric perturbations gauge-transform as

B̃(v)
α = B(v)

α + L′α , C̃(v)
α = C(v)

α − Lα , Ũ (v)
α = U (v)

α + L(v)′
α , (4.31)

and the tensor perturbations are gauge-invariant at the linear order, where we defined the scalar shear χ := a (β + γ′) of
the normal observer (nα = 0) and the extrinsic 3-curvature K := −3H + κ and its perturbation κ := 3Hα− 3φ̇− ∆

a2
χ.

Based on the above gauge transformation properties, we can construct linear-order gauge-invariant quantities. The
gauge-invariant variables are

φv := φ− aHv , φχ := φ−Hχ , vχ := v − 1

a
χ , δv := δ − aρ̇

ρ
v , (4.32)

αχ := α− 1

a
χ′ , φδ := φ+

δρ

3(ρ+ p)
, Ψ(v)

α := B(v)
α + C(v)′

α , v(v)α := U (v)
α −B(v)

α .

These gauge-invariant variables (αχ, φχ, vχ,Ψα, v
(v)
α ) correspond to ΦA, ΦH , v(0)s , Ψ, and vc in Bardeen (1980).

4.1.6 Popular Choices of Gauge Condition

By a suitable choice of coordinates, we can set T = L = 0, simplifying the metric. For simplicity, we only consider the
scalar perturbations in the following two cases.

• The conformal Newtonian Gauge.— in which we choose the spatial and the temporal gauge conditions:

γ̃ = γ = 0 → L = 0 , β̃ = β = 0 → T = 0 , χ = 0 . (4.33)

All the gauge modes are fixed, and the metric in this gauge condition is

ds2 = −a2 (1 + 2ψ) dη2 + a2 (1 + 2ϕ) ḡαβdx
αdxβ , ψ := α = αχ , ϕ := φ = φχ , (4.34)

and the velocity vector is then
U = vχ , v = −∇U . (4.35)

The metric and its equations appear more like the Newtonian equations, and hence the name. We will use this gauge
condition to illustrate and simplify the problems.

• Synchronous-Comoving Gauge.— in which we choose the spatial and the temporal gauge conditions:

α̃ = α = 0 → (aT )′ = 0 , β̃ = β = 0 → T = L′ , (4.36)

such that the metric becomes
ds2 = −a2dη2 + a2 (ḡαβ + 2Cαβ) dx

αdxβ . (4.37)

All the metric perturbations in this gauge condition are included in the spatial metric tensor. However, as apparent from
the above gauge condition, the gauge freedoms are not completely fixed:

T = L′ =
1

a
F (x) , L =

∫
dη

F (x)

a
+G(x) , (4.38)

where F and G are two arbitrary functions of spatial coordinates. Typically, this issue is resolved by assuming additional
condition at the initial epoch

v = 0 → F (x) = 0 , T = 0 . (4.39)

This condition is indeed the temporal comoving gauge condition, and hence the whole choice is often referred to as the
comoving-synchronous gauge (or synchronous-comoving). The comoving gauge is often chosen with a different spatial
gauge condition (γ = 0). Note, however, that the spatial function G(x) is still left unspecified, and hence γ is a gauge
mode, whereas U for example is physical. Due to this deficiency, we will not use this gauge condition in the following.

The notation convention in Ma and Bertschinger (1995):

hij := k̂ik̂jh+

(
k̂ik̂j −

1

2
δij

)
6η → 2Cij , h→ 6φ+ 2∆γ , η → −φv . (4.40)
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4.2 Energy-Momentum Tensor

4.2.1 Formal Definition

We will consider a simple action of the matter sector, in addition to the gravity described by the Einstein-Hilbert action:

S =: Sg + Sm =:

∫ √
−g d4x

[
R

16πG
− Λ

8πG
+ Lm

]
, (4.41)

where the matter Lagrangian includes the cosmological fluids and other matter fields such as scalars and so on. The
variation with respect to the metric,

0 =
δS

δgµν
=
M2

pl

2

√
−g
[
Rµν −

1

2
gµνR+ Λgµν

]
+
δSm
δgµν

, (4.42)

yields the Einstein equation

Rµν −
1

2
gµνR+ Λgµν = − 1

M2
pl

2√
−g

δSm
δgµν

= 8πG Tµν , (4.43)

where the energy-momentum tensor defined by the action

Tµν := − 2√
−g

δSm
δgµν

= gµνLm − 2
δ

δgµν

∫
d4x Lm , (4.44)

and it is indeed the conserved current (tensor) of the action under the space-time translation invariance. The Noether
theorem says that when there exists a (global) symmetry, there exists a conserved current. The space-time translation
invariance is the symmetry of general relativity, and the Noether current associated with this symmetry is the energy-
momentum tensor:

Tµν;ν = 0 . (4.45)

Note that we can repeat the calculations with upper indicies and obtain

Tµν :=
2√
−g

δSm
δgµν

= gµνLm + 2
δ

δgµν

∫
d4x Lm , (4.46)

but mind the subtlety, for example, for the scalar field action,

Lϕ = −1

2
gµν∂µϕ∂νϕ , δLϕ = −1

2
δgµν∂µϕ ∂νϕ =

1

2
δgµν∂

µϕ ∂νϕ . (4.47)

4.2.2 General Decomposition for Cosmological Fluids

For our purposes, we are not interested in the microscopic states of the systems, but interested in their macroscopic
states, often described by the density, the pressure, the temperature, and so on. The energy-momentum tensor for a fluid
can be expressed in terms of the fluid quantities measured by an observer with four velocity uµ as (the most general
decomposition)

Tµν := ρuµuν + pHµν + qµuν + qνuµ + πµν , 0 = Hµνuν , (4.48)

whereHµν is the projection tensor and

Hµν = gµν+uµuν , Hµµ = 3 , uµqµ = 0 = uµπµν , πµν = πνµ , πµµ = 0 . (4.49)

In general, we decompose the fluid quantities into the background and the perturbations:

ρ := ρ̄+ δρ , p := p̄+ δp , δp := c2sδρ+ e , c2s :=
˙̄p
˙̄ρ
, (4.50)

qα := aQα , παβ := a2Παβ , e := ṗΓ , Γ =
δp

ṗ
− δρ

ρ̇
, (4.51)
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where Qα and Παβ are based on ḡαβ . At the background level, all the above fluid quantities vanish, except ρ = ρ̄
and p = p̄. The sound speed c2s is the response of the pressure perturbation in terms of the density perturbation, and
the remaining response is captured in terms of the non-adiabatic perturbation e. For multiple fluids, we can add up the
individual energy-momentum tensor to derive the total energy-momentum tensor. In the case of multiple fluids, their fluid
velocities are not necessarily identical, and there exist non-vanishing energy flux. Non-vanishing e and Γ parametrize the
entropic perturbations of the fluids.

Though these relations are exact, we will be concerned with linear-order perturbations. Raising the index of the energy
momentum tensor, we derive

T 0
0 = −ρ+O(2) , T 0

α = (ρ̄+ p̄) (Uα −Bα) +Qα +O(2) , (4.52)

Tαβ = p δαβ +Παβ +O(2) , Tα0 = −(ρ̄+ p̄)Uα −Qα +O(2) , (4.53)

where all quantities are those appearing in Tµν . Given the conditions 0 = uµqµ = uµπµν , the (spatial) energy flux and
the anisotropic pressure should satisfy

q0 = 0 +O(2) , π0µ = 0 +O(2) . (4.54)

• Gauge transformation properties of the fluid quantities.—

δ̃ = δ − ρ̄′

ρ̄
T , δ̃p = δp− p̄′ T , Q̃α = Qα , π̃µν = πµν , ẽ = e . (4.55)

Note that the spatial energy flux is gauge-invariant, but dependent upon the observer choice.

4.2.3 Tetrad Approach and Observables

The variables ρ, p, qµ and πµν are the energy density, the isotropic pressure (including the entropic one), the (spatial)
energy flux and the anisotropic pressure, measured by uµ. If we consider an observer with uµobs( ̸= uµ) and the energy
tensor Tµν with uµ above, the observer measures

ρobs = Tµνu
µ
obsu

ν
obs , pobs =

1

3
TµνĤµν , qobsµ = −TρσuρobsĤ

σ
µ , πobsµν = TρσĤρµĤσν−pobsĤµν ,

(4.56)
where Ĥµν is the projection tensor in terms of uµobs. Of course, in case uµobs = uµ, the relation yields the same quantities
in Tµν : ρobs = ρ and so on. Remember that these fluid quantities are observer-dependent, hence it would be ideal to
provide the energy momentum tensor for each fluid in terms of the fluid quantities that would be measured by a fictitious
observer moving together with the fluid uµf = uµobs (hence without spatial flux qµ = 0). This brings us to the tetrad
description.

Given the observer with uµ, one can define a local Lorentz frame (where the metric is Minkowski) by constructing
three spacelike orthonormal vectors [ei]

µ. For example, one can construct three rectangular basis vectors [ex]
µ, [ey]µ,

[ez]
µ and of course [et]

µ = uµ = −[et]µ, where the component index a of [ea]
µ represents their coordinates. The

orthonormality condition and the spacelike normalization is

ηab = gµν [ea]
µ[eb]

ν → δij = gµν [ei]
µ[ej ]

ν , 0 = gµν [ei]
µ[et]

ν , −1 = gµν [et]
µ[et]

ν , (4.57)

where a, b, · · · = t, x, y, z represent the local Lorentz indices.
First, assuming that the four velocity of the observer is indeed the fluid velocity, we can go to the rest-frame of the

fluid by using the tetrad expressions as

ρ = Tµν [et]
µ[et]

ν , p =
1

3
Tµν

3∑
i=1

[ei]
µ[ei]

ν , Hµν =

3∑
i=1

[ei]µ[ei]ν , qµ =

3∑
i=1

qi[e
i]µ .

(4.58)
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Noting that the metric is Minkowski in the rest frame, the energy-momentum tensor in the rest-frame of the fluid can be
written as

Tab =


ρ −qx −qy −qz
−qx p πxy πxz
−qy πyx p πyz
−qz πzx πzy p

 , uµ ≡ uµf , (4.59)

where in fact qi = 0 because it is in the fluid rest frame. The energy density ρ and the pressure p in Tµν are in fact those
measured by the observer rest frame, moving together with the fluid. The orthogonality condition for the energy-flux and
the anisotropic stress implies

0 = uµqµ = qt , 0 = uµπµν = πta , 0 = πµµ = πtt + πii = πii . (4.60)

However, we should pay attention to the difference in the quantities qµ and πµν expressed in the rest-frame and in the
FRW coordinate:

qi := qµ[ei]
µ = Q(1)

α δαi +O(2) , πij := πµν [ei]
µ[ei]

ν = Π
(1)
αβδ

α
i δ

β
j +O(2) , (4.61)

where they differ with the scale factor a at the linear order. When the fluid velocity is the same as the observer velocity,
the spatial flux qi ≡ 0, or qµ ≡ 0.

As noted, the fluid quantities are observer-dependent. Given the energy momentum tensor in terms of the fluid rest-
frame quantities (qµ = 0), if the observer is moving with eµt relative to the fluid velocity uµf , the observer measures
different fluid quantities from those defined in the rest frame:

T fµν = ρfu
f
µu

f
ν + pfHfµν + πfµν , Hµν = gµν + ufµu

f
ν , qfµ ≡ 0 . (4.62)

The energy-momentum tensor can be projected into the observer rest-frame [et]
µ as

T̃ab := T fµν [ea]
µ[eb]

ν = ρfuaub + pf (ηab + uaub) + πab , ua := ufµ[ea]
µ , (4.63)

where we put tilde to emphasize that the components of T̃ab are the fluid quantities measured by the observer [et]µ in the
rest frame. The fluid velocity and the anisotropic pressure satisfy

−1 = uµfu
f
µ = uaua = −u2t + u2i , 0 = πµµ = πaa → πtt = πii . (4.64)

Furthermore, the anisotropic pressure is perpendicular to the fluid velocity:

0 = uµfπ
f
µν = uaπab = utπta + uiπia , πti = πij

uj

ut
= O(2) . (4.65)

Therefore, the energy density and the pressure measured by the observer are

ρ̃ = T fµν [et]
µ[et]

ν = T̃tt = (ρ+ p)fu
2
t − pf + πtt , (4.66)

p̃ =
1

3
T fµνĤµν =

1

3
T̃ii =

1

3
(ρ+ p)fuiui + pf +

1

3
πii = pf +

1

3

[
(ρ+ p)f (u

2
t − 1) + πtt

]
, (4.67)

and the anisotropic pressure is

π̃ij = (ρ+ p)fu
iuj + πij −

1

3
δij
[
(ρ+ p)f (u

2
t − 1) + πtt

]
, 0 = π̃ti = π̃tt . (4.68)

Since the velocities of the fluid and the observer are different, the observer measures the non-vanishing spatial energy flux

q̃i = T̃ ti = (ρ+ p)fu
tui + πti . (4.69)

If the observer velocity is the fluid velocity, we obtain the consistency relation:

ua = ηta , ρ̃ = ρf , p̃ = pf , q̃i = 0 , π̃ij = πfij . (4.70)
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From Tµν in Eq. (4.52), it is clear that at the linear order in perturbations the energy density ρ, pressure p, and
anisotropic pressure Παβ are the same as those measured by an observer, independent of the fluid or the observer velocity.
However, the velocity of the fluid and the spatial flux measured by the observer are

ua = eaµu
µ =

(
1, U i − U iobs

)
+O(2) , q̃i = (ρ+ p)(U i − U iobs) +O(2) , (4.71)

where the presence of the relative velocity between the fluid and the observer is apparent. In addition to the fluid quantities
ρ, p, πµν (same for any observer), the energy-momentum tensor Tµν can be written in terms of the fluid velocity without
spatial flux qµ ≡ 0, and the off-diagonal part of the energy-momentum tensor is

T 0
α = (ρ̄+ p̄)

(
Ufα −Bα

)
+ 0 . (4.72)

One can also express Tµν in terms of the observer velocity uµobs with non-vanishing spatial flux q̃i in Eq. (4.71), which
defines

q̃i =: [ei]
µ
obsq

obs
µ = Qobs

α δαi +O(2) , (4.73)

and the off-diagonal part of the energy-momentum tensor is again identical:

T 0
α = (ρ̄+ p̄)

(
Uobs
α −Bα

)
+Qobs

α = (ρ̄+ p̄)
(
Ufα −Bα

)
. (4.74)

In summary, the fluid quantities measured by the observer are

0 = πtt = πti , ρ̃ = ρ , p̃ = p , π̃ij = πij , q̃i = (ρ̄+ p̄)
(
U i − U iobs

)
. (4.75)

In other words, whoever the observer is, the fluid quantities the observer measures are identical to those at the fluid rest
frame, except the spatial energy flux.

4.2.4 Distribution Function

In cosmology, photons and neutrinos are the most important radiation components, and they are not described by the fluid
approximation. Their statistical properties are captured by the distribution function F :

F := f̄ + f , (4.76)

where the background distribution f̄ often follows the equilibrium distribution and the perturbation f describes the devia-
tion from the equilibrium. The equilibrium distribution for massless particles is fully described by the physical momentum
and the temperature, and it is independent of position and time.2 In the rest-frame of an observer, the physical energy E
and the momentum P a can be measured, and the energy-momentum tensor can be re-constructed as

T ab = g

∫
d3P

E
P aP bF , (4.77)

where the four momentum satisfies the on-shell condition −m2 = PaP
a and E = P t and g is the spin-degeneracy of the

particle, equal to two for photons and one for left-handed neutrinos.
The fluid elements can be readily computed as

ρ = g

∫
d3P EF , qi = Qαδ

α
i = g

∫
d3P P iF , pδij + πij = g

∫
d3P

P iP j

E
F . (4.78)

For later convenience, we introduce an angular decomposition

f(P, n̂) :=
∑
lm

(−i)l
√

4π

2l + 1
flm(P )Ylm(n̂) , flm(P ) ≡ il

√
2l + 1

4π

∫
d2n̂ Y ∗lm(n̂)f(P, n̂) , (4.79)

2In the background, the physical momentum and the temperature redshift in the same way.
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where P i = Pni and n̂ is the unit directional vector. The normalization convention may differ in literature. The pertur-
bations in the fluid quantities are then related to the distribution function as

δρ = 4πg

∫ ∞
0
dP P 2Ef00 , δp = Tr δT ij =

4πg

3

∫ ∞
0
dP

P 4

E
f00 , (4.80)

where we performed the angular integration. Higher moments of the fluid elements will be related to the higher-moments
of the distribution function. At the linear order, the spatial energy flux from the distribution function is related to the
relative velocity as

qi = (ρ̄+ p̄)
(
U if − U iobs

)
= Qobs

α δαi . (4.81)

4.2.5 Multiple Cosmological Fluids

The details are summarized in Hwang and Noh (2002). In a universe with multiple fluids i = 1, · · · , N , each fluid com-
ponent has different velocity uµ(i). Given the fluid components in a coordinate system, the energy-momentum tensor Tµν
is completely set (i.e., all the components of Tµν):

T tot
µν =

∑
i

T (i)
µν , (4.82)

which defines (ignoring the super-script “total”)

T 0
0 = −ρ+O(2) , Tαβ = p δαβ +Παβ +O(2) , (4.83)

or defines

ρtot = (ρ̄+ δρ)tot =
∑
i

ρ(i) = −T 0
0 +O(2) , ptot =

∑
i

p(i) , Πtot
αβ =

∑
i

Π
(i)
αβ , (4.84)

such that the energy density, pressure, anisotropic pressure are just the sum of individual fluids, regardless of fluid and ob-
server velocities at the linear order. However, the velocity uµtot (and qtotµ ) that would appear in the total energy momentum
tensor is yet to be determined. In fact, we can define uµtot as one without spatial flux,3 i.e.,

T 0
α = (ρ̄+ p̄) (Uα −Bα)tot +O(2) :=

∑
i

(ρ̄+ p̄)(i)(U
(i)
α −Bα) +O(2) . (4.85)

For the case of multiple fluids, it is possible to have interactions between fluids, even in the background, such that the
energy conservation law is

T (i)µ
ν;µ =: I(i)ν , 0 =

∑
i

I(i)µ , T tot
µν;µ = 0 . (4.86)

In the background the conservation equation becomes

˙̄ρ(i) + 3H (ρ̄+ p̄)(i) = Ī(i) ,
˙̄ρ(i)

ρ(i)
= −3H (̄ρ̄+ p̄)(i)(1− q(i)) , (4.87)

where we defined (ignoring the vector type)

I
(i)
0 =: −a

[
Ī(i)(1 + α) + δI(i)

]
, I(i)α =: J (i)

,α , Ī(i) =: 3H(ρ̄+ p̄)(i)q(i) . (4.88)

At the background level, the equation of state and the sound speed of the individual components are

w(i) :=
p̄(i)

ρ̄(i)
, c2s(i) :=

˙̄p(i)
˙̄ρ(i)

= w(i) +
dw(i)

d ln ρ̄(i)
,

1

1 + w
=
∑
i

x(i)

1 + w(i)
, (4.89)

ẇ(i) = −3H(c2s(i) − w(i))(1 + w(i))(1− q(i)) , (4.90)

3This is possible nonlinearly, as we trade three dof in spatial flux with three dof in velocity.
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where we defined
x(i) :=

ρ̄(i) + p̄(i)

ρ̄+ p̄
,

∑
i

x(i) = 1 . (4.91)

At the perturbation level, we derive

δp =
∑
i

δp(i) =
∑
i

c2s(i)δρ(i) +
∑
i

e(i) =: c2sδρ+ e , (4.92)

e =
∑
i

(
c2s(i) − c

2
s

)
δρ(i) +

∑
i

e(i) =: erel + eint , (4.93)

where we defined the intrinsic and the relative entropy perturbations

erel :=
∑
i

(
c2s(i) − c

2
s

)
δρ(i) (4.94)

=
1

2

∑
i,j

(ρ̄+ p̄)(i)(ρ̄+ p̄)(j)

ρ̄+ p̄
(c2(i) − c

2
(j))Sij +

∑
i

(ρ̄+ p̄)(i)

ρ̄+ p̄
q(i)c

2
s(i)δρ , (4.95)

where the relative fluctuation is

Sij :=
δn(i)

n(i)
−
δn(j)

n(j)
=

δρ(i)

ρ̄(i) + p̄(i)
−

δρ(j)

ρ̄(j) + p̄(j)
. (4.96)

• Gauge-transformation properties.—

δ̃I(i) = δI(i) − Ī ′(i)T , J̃(i) = J(i) + aĪ(i)T , S̃ij = Sij − 3HT (q(i) − q(j)) , (4.97)

where Sij is gauge-invariant only when there is no energy transfer in the background q(i) ≡ 0.

4.3 Einstein Equations

4.3.1 Christoffel Symbols

In the absence of the torsion, the Christoffel symbols are uniquely determined by the metric tensor as

Γµνρ =
∂xµ

∂ξσ
∂2ξσ

∂xν∂xρ
=

1

2
gµσ(gνσ,ρ + gρσ,ν − gνρ,σ) , 0 =

d2ξµ

dτ2
, dτ2 = −ηµνdξµdξν , (4.98)

where ξµ is a freely falling coordinate and dτ is the proper time. To the linear order in perturbations, we derive

Γ0
00 =

a′

a
+A′ → H+ ψ′, Γ0

0α = A,α −
a′

a
Bα → ψ,α , (4.99)

Γα00 = A|α −Bα′ − a′

a
Bα → ψ,α , (4.100)

Γ0
αβ =

a′

a
ḡαβ − 2

a′

a
ḡαβA+B(α|β) + C ′αβ + 2

a′

a
Cαβ → Hḡαβ (1− 2ψ) +

(
ϕ′ + 2Hϕ

)
ḡαβ , (4.101)

Γα0β =
a′

a
δαβ +

1

2

(
B
|α
β −Bα

|β

)
+ Cα′β → Hδαβ + ϕ′δαβ , (4.102)

Γαβγ = Γ̄αβγ +
a′

a
ḡβγB

α + 2Cα(β|γ) − C
|α

βγ → Γ̄αβγ + 2ϕ,(γδ
α
β) − ϕ

,αḡβγ , (4.103)

where the conformal Hubble parameter isH = a′/a and Γ̄αβγ is the Christoffel symbols based on 3-metric ḡαβ .
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4.3.2 Riemann Tensor

The Riemann tensor can then be constructed in terms of the Christoffel symbols as

Rµνρσ := Γµνσ,ρ − Γµνρ,σ + ΓϵνσΓ
µ
ρϵ − ΓϵνρΓ

µ
σϵ = Γµνσ;ρ − Γµνρ;σ − ΓϵνσΓ

µ
ρϵ + ΓϵνρΓ

µ
σϵ , (4.104)

and the Riemann tensor has all the information of the geometry, such that how any four vector changes locally is fully
determined by the Riemann tensor

2uµ;[νρ] = uσR
σ
µνρ , uρ;[νµ] =

1

2
Rρσµνu

σ . (4.105)

Out of the Riemann tensor, we can construct the Ricci tensor (and Ricci scalar) by contracting the Riemann tensor as

Rµν := Rρµρν , R = Rµµ , (4.106)

and construct the (conformal) Weyl tensor as

Cµνρσ := Rµνρσ −
1

2
(gµρRνσ + gνσRµρ − gνρRµσ − gµσRνρ) +

R

6
(gµρgνσ − gµσgνρ) . (4.107)

The Riemann tensor has the symmetry:

Rµνρσ = R[µν][ρσ] = Rρσµν , Rµνρσ +Rµρσν +Rµσνρ = Rµ[νρσ] = 0 , (4.108)

such that its 20 independent components can be separated into the Ricci tensor (10 components) and the (traceless) Weyl
curvature tensor (also 10 components with all the symmetry of the Riemann tensor)

Cµνµν = 0 , Cµνρσ = C[µν][ρσ] = Cρσµν , Cµνρσ + Cµρσν + Cµσνρ = Cµ[νρσ] = 0 . (4.109)

The Ricci tensor is algebraically set by matter distribution through the Einstein equation, but the Weyl tensor is determined
by differential equations with suitable boundary conditions.

To the background, we derive

R0
α0β = H′ḡαβ , Rα00β = H′δαβ , Rαβγδ = 2

(
K +H2

)
δα[γ ḡδ]β = R̄αβγδ + 2H2δα[γ ḡδ]β , (4.110)

R00 = −3H′ , Rαβ =
(
2K +H′ + 2H2

)
ḡαβ = R̄αβ +

(
H′ + 2H2

)
ḡαβ , R =

6

a2
(
K +H′ +H2

)
,

where we defined the Riemann tensor for a 3-hypersurface based on 3-metric ḡαβ

R̄αβγδ = 2Kδα[γ ḡδ]β , R̄αβ = 2Kḡαβ , R̄ = 6K . (4.111)

and we used for any second-rank tensor Fαβ

Fαβ|[γδ] = K
(
ḡα[δFγ]β + ḡβ[δFγ]α

)
. (4.112)

To the linear order in perturbations, we derive the Riemann tensor:

Rµν00 = 0 , R0
00α = −H′Bα , R0

0αβ = 0 , (4.113)

R0
α0β = H′ḡαβ −

[
HA′ + 2H′A

]
ḡαβ −A,α|β +B′(α|β) +HB(α|β) + C ′′αβ +HC ′αβ + 2H′Cαβ , (4.114)

R0
αβγ = 2Hḡα[βA,γ] −Bα|[βγ] +

1

2
(Bγ|αβ −Bβ|αγ)− 2C ′α[β|γ] , (4.115)

Rα00β = H′δαβ −HA′δαβ −A
|α
β +

1

2

(
B
|α
β +Bα

|β

)′
+

1

2
H
(
B
|α
β +Bα

|β

)
+ Cα′′β +HCα′β , (4.116)

Rα0βγ = 2Hδα[βA,γ] −B
|α

[β γ] +Bα
|[βγ] − 2H2δα[βBγ] − 2Cα′[β|γ] , (4.117)

Rαβ0γ = H
(
ḡβγA

,α − δαγA,β
)
+H′ḡβγBα −H2

(
ḡβγB

α − δαγBβ
)
− 1

2

(
B
|α
β −Bα

|β

)
|γ
+ Cα′γ|β − C

′ |α
βγ ,(4.118)

Rαβγδ = R̄αβγδ +H2
(
δαγ ḡβδ − δαδ ḡβγ

)
(1− 2A) (4.119)

+
1

2
H
[
ḡβδ

(
B |α
γ +Bα

|γ

)
− ḡβγ

(
B
|α
δ +Bα

|δ

)
+ 2δαγB(β|δ) − 2δαδ B(β|γ)

]
+H

[
ḡβδC

α′
γ − ḡβγCα′δ + δαγC

′
βδ − δαδ C ′βγ + 2H

(
δαγCβδ − δαδ Cβγ

)]
+2Cα(β|δ)γ − 2Cα(β|γ)δ + C

|α
βγ δ − C

|α
βδ γ ,
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and by contracting the Riemann tensor we derive the Ricci tensor and the Ricci scalar:

R00 = −3H′ + 3HA′ +∆A−Bα′
|α −HB

α
|α − C

α′′
α −HCα′α , (4.120)

R0α = 2HA,α −H′Bα − 2H2Bα +
1

2
∆Bα −

1

2
Bβ
|αβ − C

β′
β|α + C

′ |β
αβ , (4.121)

Rαβ = 2Kḡαβ +
(
H′ + 2H2

)
ḡαβ(1− 2A)−HA′ḡαβ −A,α|β +B′(α|β) + 2HB(α|β) +HḡαβB

γ
|γ (4.122)

+C ′′αβ + 2
a′

a
C ′αβ + 2

(
H′ + 2H2

)
Cαβ +HḡαβCγ′γ + 2Cγ(α|β)γ − C

γ
γ|αβ −∆Cαβ ,

R =
1

a2
[
6
(
H′ +H2 +K

)
− 6HA′ − 12

(
H′ +H2

)
A− 2∆A (4.123)

+2Bα′
|α + 6HBα

|α + 2Cα′′α + 6HCα′α − 4KCαα − 2∆Cαα + 2Cαβ|αβ

]
.

• HW: derive the Riemann tensor and the Ricci tensor in the conformal Newtonian gauge

4.3.3 Einstein Equation and Background Equation

The Einstein equation is that the Einstein tensor Gµν is proportional to the energy-momentum tensor Tµν :

Gµν := Rµν −
1

2
gµνR+ Λ gµν = 8πG Tµν , (4.124)

where G is the Newton’s constant and Λ is the cosmological constant. The cosmological constant can be put in the
right-hand side as a part of the energy-momentum tensor:

ρΛ = −pΛ =
Λ

8πG
. (4.125)

The trace of the Einstein equation gives

T = −ρ+ 3p , R = 8πG(ρ− 3p) + 4Λ , (4.126)

and the Ricci tensor is completely set by the trace of the energy-momentum tensor. To the background, the Einstein
equation yields the Friedmann equation give

H2 =
8πG

3
ρ̄− K

a2
+

Λ

3
, H2 + Ḣ =

ä

a
= −4πG

3
(ρ̄+ 3p̄) +

Λ

3
, (4.127)

and the energy-momentum conservation yields

˙̄ρ+ 3H (ρ̄+ p̄) = 0 . (4.128)

In terms of the conformal time, the Friedmann equation becomes

H′ = a2(H2 + Ḣ) = −4πG

3
a2(ρ̄+ 3p̄) , H2 +H′ = a′′

a
=

4πG

3
a2(ρ̄− 3p̄)−K . (4.129)

In a flat Universe (K = 0) dominated by an energy component ρ̄ ∝ a−n, we can derive the analytic solutions to the
Friedmann equation:

a ∝ η
2

n−2 ∝ t2/n , t ∝ η
n
n−2 , H = Ho

(
to
t

)
=

2

nt
, H = Ho

(
ηo
η

)
=

2

n− 2

1

η
,

(4.130)
or in terms of equation of state ρ̄ ∝ a−3(1+w),

a ∝ η
2

1+3w ∝ t2/3(1+w) , t ∝ η
3(1+w)
1+3w , H =

2

3(1 + w)t
, H =

2

1 + 3w

1

η
, (4.131)

where we used n = 3(1 + w).
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• Einstein-de Sitter Universe.— This simple model is indeed a good approximation to the late Universe, before dark
energy starts to dominate the energy budget. The evolution equations are

a =

(
t

t0

)2/3

=

(
η

η0

)2

,
t

t0
=

(
η

η0

)3

, η0 = 3t0 , (4.132)

H =
2

3t
, H =

2

η
, ρm =

1

6πGt2
, r = η0 − η =

2

H0

(
1− 1√

1 + z

)
, (4.133)

where the reference point t0 satisfies a(t0) = 1, but it can be any time t0 ∈ (0,∞).

4.3.4 Linear-Order Einstein Equation

The Einstein equation can be expanded up to the linear order in perturbations, and decomposed into the evolution equa-
tions describing the scalar, the vector, and the tensor perturbations. At the linear order, they do not mix.

• Scalar perturbations.—

G0
0 : Hκ+

∆+ 3K

a2
φ = −4πGδρ , (4.134)

G0
α : κ+

∆+ 3K

a2
χ = 12πG(ρ̄+ p̄)av , (4.135)

Gαα −G0
0 : κ̇+ 2Hκ+

(
3Ḣ +

∆

a2

)
α = 4πG (δρ+ 3δp) , (4.136)

Gαβ −
1

3
δαβG

γ
γ : χ̇+Hχ− φ− α = 8πGΠ , (4.137)

where we defined

κ := 3Hα−3φ̇−∆

a2
χ , χ := aβ+aγ′ , Παβ :=

1

a2

(
Π,α|β −

1

3
ḡαβ∆Π

)
+
1

a
Π(α|β)+Π

(t)
αβ . (4.138)

The energy-momentum conservation yields

T ν0;ν : δρ̇+ 3H (δρ+ δp)− (ρ̄+ p̄)

(
κ− 3Hα+

1

a
∆v

)
= 0 , (4.139)

T να;ν :
[a4(ρ̄+ p̄)v]·

a4(ρ̄+ p̄)
− 1

a
α− 1

a(ρ̄+ p̄)

(
δp+

2

3

∆ + 3K

a2
Π

)
= 0 . (4.140)

• Vector perturbations.—

G0
α :

∆ + 2K

2a2
Ψ(v)
α + 8πG(ρ̄+ p̄)v(v)α = 0 , (4.141)

Gαβ : Ψ̇(v)
α + 2HΨ(v)

α = 8πG Π(v)
α , (4.142)

T να;ν :
[a4(ρ̄+ p̄)v

(v)
α ]·

a4(ρ̄+ p̄)
+

∆+ 2K

2a2
Π

(v)
α

ρ̄+ p̄
= 0 . (4.143)

• Tensor perturbations.—

Gαβ : C̈(t)α
β + 3HĊ(t)α

β −
∆− 2K

a2
C(t)α

β = 8πGΠ(t)α
β . (4.144)

•Multiple fluids.— In the presence of interactions in Eq. (4.88), the individual conservation becomes

T
(i)ν
0;ν : δρ̇(i) + 3H (δρ+ δp)(i) − ˙̄ρ(i)α− (ρ̄+ p̄)(i)

(
κ+

1

a
∆v(i)

)
= δI(i) , (4.145)

T (i)ν
α;ν :

[a4(ρ̄+ p̄)v]·(i)

a4(ρ̄+ p̄)(i)
− 1

a
α− 1

a(ρ̄+ p̄)(i)

(
δp(i) +

2

3

∆ + 3K

a2
Π(i) − J(i)

)
= 0 . (4.146)
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The first conservation equation can be expressed as

δ̇(i) + 3H(c2s − w)(i)δ(i) + 3H(1 + w(i))q(i)δ(i) = (1 + w(i))

[
κ− 3H(1− q(i))α+

∆

a
v(i))

]
+

1

ρ̄(i)
(−3He+ δI)(i) .

(4.147)

4.4 Linear-Order Cosmological Solutions

4.4.1 Super-Horizon Solutions

On super-horizon scales k ≪ H, many simplifications can be made to derive useful relations. The definition of κ and the
first two Einstein equations are

κ ≃ 3Hα− 3φ̇ , Hκ ≃ −4πGρ̄ δ , κ ≃ 12πGρ̄(1 + w)av , (4.148)

where we used ≃ to emphasize the validity only on the super-horizon scales and we ignored the Laplacian term. Also
note that the anisotropic pressure Π is not necessarily zero on super-horizon scales. For example, photons in RDE are
tightly coupled with baryons (hence a fluid), but neutrinos free-stream, generating non-zero anisotropic pressure even on
super-horizon scales. Manipulating these equations, we first obtain that the comoving gauge density fluctuation vanishes

0 ≃ 4πGρ̄

[
δ + 3Hρ̄(1 + w)v

]
, ∴ 0 ≃ δv = δ − ρ̄′

ρ̄
v = δ + 3Hρ̄(1 + w)v , (4.149)

which can be understood in terms of k2φχ = 4πGρ̄a2δv. This also implies the equivalence

φδ := φ+
δ

3(1 + w)
, φδ − φv =

δ

3(1 + w)
+Hv ≃ 0, ∴ φv ≃ φδ , (4.150)

for the total comoving and total uniform-matter curvature fluctuations, independent of adiabatic conditions.

The other important conservation law deals with the comoving-gauge curvature (often denoted asR):

φv := φ−Hv . (4.151)

As we derive in Section 5, the comoving-gauge curvature perturbation φv in a flat universe K = 0 is conserved on large
scales throughout the evolution:

φ̇v ≃ 0 , (4.152)

if the total matter content of the Universe is adiabatic, which is the case in the standard model. However, without assuming
the adiabatic condition, we can also manipulate

Hvχ ≃
2

9H

κχ
1 + w

≃ 2(αχ − φ̇χ/H)

3(1 + w)
, (4.153)

to arrive at

φv = φχ −Hvχ ≃ φχ −
2(αχ − φ̇χ/H)

3(1 + w)
≃ 5 + 3w

3(1 + w)
φχ +

2φ̇χ
3H(1 + w)

+
16πGΠ

3(1 + w)
, (4.154)

where we used the second Einstein equation and the definition of κ.
In the standard model, the anisotropic pressure is Π = 0 in MDE, and the quarupole moments from photons and

neutrinos in RDE give rise to

8πGΠ =
2

5
fναχ ≃ 0.175 αχ , fν :=

ρ̄ν
ρ̄rad

≈ 0.438 . (4.155)

Ignoring this correction and assuming the conservation of φv with the adiabatic conditions, we derive

αχ(t) ≃ −φχ(t) , φv ≃
5 + 3w

3(1 + w)
φχ(t) . (4.156)
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While φv is conserved on super-horizon scales throughout the whole evolution, the Newtonian gauge potential evolves,
as the Universe transitions from the radiation dominated to the matter dominated eras:

φRDE
χ =

2

3
φv , φMDE

χ =
3

5
φv . (4.157)

Without the adiabatic conditions, the comovoing-gauge curvature φv evolves as well, but the relation in Eq. (4.154) is still
valid on super-horizon scales.

Finally, the energy-momentum conservation in Eq. (4.139) can be re-arranged as

3(1 + w)φ̇δ +
3H

ρ̄
(δp− p̄ δ) + (1 + w)

∆

a2
(χ− av) = 0 , (4.158)

implies that in the super-horizon limit we have a conservation law for a medium with adiabatic condition e = δp−c2sδρ ≡
0:

φ̇δ ≃ 0 , (4.159)

where we assumed the equation of state is constant. The uniform-density gauge curvature is often denoted as ζ = φδ.
Note that in the conservation equation we assumed no energy transfers between any fluids, and this conservation law holds
for individual adiabatic fluids.

4.4.2 Einstein Equation in the conformal Newtonian Gauge

In the conformal Newtonian gauge we have

κ = 3Hψ − 3ϕ̇ , χ = 0 , U = vχ , v = −∇U . (4.160)

By substituting into the Einstein equation, we derive

Hκ+
∆+ 3K

a2
ϕ = −4πGδρ , ϕ+ ψ = −8πGΠ , (4.161)

κ = 12πG(ρ̄+ p̄)av , κ̇+ 2Hκ+

(
3Ḣ +

∆

a2

)
ψ = 4πG (δρ+ 3 δp) . (4.162)

To remove κ in favor of the other variables, we use Eq. (4.162) to arrive at

ϕ̇+Hϕ = −4πG(ρ̄+ p̄)av − 8πGHΠ , (4.163)

and Eq. (4.161) can be further manipulated as

−(∆ + 3K)ϕ = 4πGa2ρ̄ δ + aHκ = 4πGa2ρ̄ [δ + 3Hv(1 + w)] ≡ 4πGa2ρ̄ δv , (4.164)

where δv is the density fluctuation in the comoving gauge:

δv := δ −
˙̄ρ

ρ̄
av = δ + 3Hv . (4.165)

Finally, the equation for the velocity can be obtained from Eq. (4.162) as

v′ +Hv = −ϕ+
δpv
ρ̄+ p̄

− 8πGΠ+
2

3

∆ + 3K

a2
Π

ρ̄+ p̄
, (4.166)

where the pressure fluctuation in the comoving gauge is

δpv := δp− ˙̄p av . (4.167)

Assuming a flat Universe (K = 0) and a pressureless medium (p = δp = 0), we can further simplify the equation as

ϕ+ ψ = 0 , κ =
3

a
(aψ)· = 12πGρ̄av , ∆ϕ = −4πGa2ρ̄ δv , v′ +Hv = ψ . (4.168)
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4.4.3 Newtonian Correspondence

As apparent, the relativistic equations appear quite similar or identical to those in the Newtonian dynamics. Here we
identify such correspondence made available in a particular choice of gauge. However, keep in mind that the relativistic
dynamics is intrinsically different from the Newtonian, and such correspondence is only identified in a limited case (e.g.,
linear order for pressureless media).

With β ≡ 0 in the conformal Newtonian gauge, we find the velocity potential in the standard Newtonian perturbation
theory

U = v , v = −∇v , θ := −1

a
∇ · v =

1

a
∆v , (4.169)

and by taking the divergence of v in Eq. (4.168), we obtain the governing equation

∆ψ =
1

a
∆(av)′ = (a2θ)· , ∴ θ̇ + 2Hθ =

1

a2
∆ψ = 4πGρ̄ δv . (4.170)

The last remaining equation in the SPT can be obtained by taking the time derivative of δv in Eq. (4.168):

δ̇v = −
∆(aϕ)·

4πGa3ρ̄
= θ . (4.171)

where we assumed in this case ρ̄ ∝ 1/a3. With a proper identification of gauge-invariant variables to the standard
Newtonian perturbation theory

vχ → U , αχ = −φχ → δΦ , δv → δm , (4.172)

we find the governing equation in SPT is fully relativistic at the linear order.
Manipulating the Newtonian gauge equations, we find that the density fluctuation then follows the same evolution

equation as in the standard Newtonian perturbation theory

δ̈v + 2Hδ̇v − 4πGρ̄mδv = 0 . (4.173)

With a mathematical identity

1

a2H

[
a2H2

(
δ

H

)·]·
= δ̈ + 2Hδ̇ − δ

(
Ḧ

H
+ 2Ḣ

)
, (4.174)

and by using the Friedmann equation with p̄ = wρ̄ (valid for any K)(
Ḧ

H
+ 2Ḣ

)
= 4πGρ̄(1 + w)(1 + 3w) , (4.175)

we can derive a formal solution for the differential equation for δv in case w = 0:

δv(k, t) = c1(k)H(t)

∫
dt

a2H2
+ c2(k)H(t) , (4.176)

where the first term is the growing solution and the second term is the decaying solution.

4.4.4 General Solutions

In fact, the most general evolution equation for the density fluctuation was derived already in Bardeen (1980); Hwang and
Noh (1999) by solving the Einstein equations with full generality:

δ̈v + (2 + 3c2s − 6w)Hδ̇v +

[
c2s
k2

a2
− 4πGρ̄(1− 6c2s + 8w − 3w2) + 12(w − c2s)

K

a2
+ (3c2s − 5w)Λ

]
δv (4.177)

≡ 1 + w

a2H

[
H2

a(ρ̄+ p̄)

(
a3ρ̄

H
δv

)·]·
+ c2s

k2

a2
δv = −

k2 − 3K

a2
1

ρ̄

{
e+ 2HΠ̇ + 2

[
−1

3

k2

a2
+ 2Ḣ + 3(1 + c2s)H

2

]
Π

}
,
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where the equation of state, the sound speed c2s, and the entropy perturbation are defined as

w :=
p̄

ρ̄
, c2s :=

˙̄p
˙̄ρ
, δp := c2sδρ+ e . (4.178)

This equation is fully general for any Λ and K. In the same way, the most general evolution equation for the potential
fluctuation was also derived in Hwang and Noh (1999)

φ̈χ + (4 + 3c2s)Hφ̇χ +

[
c2s
k2

a2
+ 8πGρ̄(c2s − w)− 2(1 + 3c2s)

K

a2
+ (1 + c2s)Λ

]
φχ

≡ ρ̄+ p̄

H

[
H2

a(ρ̄+ p̄)

( a
H
φχ

)·]·
+ c2s

k2

a2
φχ = F(e,Π) , (4.179)

where the source term F is some function of e and Π. These equations are greatly simplified in the absence of anisotropic
pressure Π and entropy perturbation e. The equations in terms of conformal time can be obtained by using

ḟ =
1

a
f ′ , f̈ =

1

a2
f ′′ − H

a
f ′ . (4.180)

In a universe with constant equation of state and K = Λ = e = Π = 0, the differential equation becomes

φ′′χ + 3(1 + w)Hφ′χ + wk2φχ = 0 , H =
2

1 + 3w

1

η
, (4.181)

and the solutions are the Bessel functions of order α:

φχ = y−α [c1(k)Jα(y) + c2(k)Yα(y)] , y :=
√
wkη , α :=

1

2

(
5 + 3w

1 + 3w

)
. (4.182)

In RDE (w = 1/3) and MDE (w = 0), the solutions are

φχ =
1

y2

[
c1(k)

(
sin y

y
− cos y

)
+ c2(k)

(
cos y

y
+ sin y

)]
, w =

1

3
, α =

3

2
, (4.183)

φχ = c1(k) +
c2(k)

y5
, w = 0 , α =

5

2
, (4.184)

where c2 is the decaying mode. The growing mode of the gravitational potential is constant at all k in MDE and also
outside the horizon in RDE, while it decays inside the horizon in RDE. Ignoring the oscillatory part inside the horizon in
RDE, the gravitational potential can be well approximated as

φχ =
2

3

1

1 + (kη)2
for η ≤ ηeq , ∀k , (4.185)

where the normalization is set at the super-horizon scale, compared to φv. The solution for the density fluctuation is from
the Einstein equation

δv =
k2 − 3K

4πGρ̄a2
φχ . (4.186)

4.4.5 ΛCDM Universe

The Universe today is best described by a flat universe (K = 0) with a cosmological constant and cold dark matter. Here
we study analytical solutions in ΛCDM universe.

• Background equations.— A flat homogeneous universe with pressureless matter and a cosmological constant is gov-
erned by

H2 =
8πG

3
ρm +

Λ

3
, H2 + Ḣ =

ä

a
= −4πG

3
ρm +

Λ

3
, Ḣ = −4πGρm = −3

2
H2Ωm(z) ,

H′ = −4πG

3
a2ρm −

Λ

3
a2 , Ωm(z) :=

ρm
ρc

=
8πGρm
3H2

, H2Ωm(z) =
8πG

3
ρm . (4.187)
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The Einstein-de Sitter Universe is obtained by setting Λ = 0 and Ωm(z) = 1. In this section, we will use Ωm ≡ Ωm(z).

• Perturbations.— We will derive the solutions first in the comoving gauge and derive the relation to the conformal
Newtonian gauge. The energy conservation and the energy constraint equations give

0 = δ̇v − κv , Hκv + 4πGρmδv = −
1

a2
∆φv ≡ δR(h) → Hδ̇v +

3

2
H2Ωmδv = −

1

a2
∆φv . (4.188)

Using the background solution for H , the homogeneous solution for δv (where the RHS is set zero) can be readily derived
as δ(h)v ∝ H . The homogeneous solution is the decaying mode, and the particular solution (or the growing mode) can be
derived as

δ(p)v = δ(h)v

∫
dt

δ
(h)
v

(
−∆φv
a2H

)
:= −D∆φv , D := H

∫
dt

H2
, φ̇v = 0 , (4.189)

where the momentum constraint equation gives the conservation of the comoving gauge curvature and we defined the
growth function D for the density.4 This solution is identical to that in the Newtonian dynamics despite the presence of Λ,
and it is indeed consistent with the general equation (4.177) with w = c2s = 0.

If we define the logarithmic growth rate f ,

f :=
d lnD

d ln a
=

1

H
d

dη
lnD =

1

H

d

dt
lnD → Ḋ = HfD , (4.190)

the energy constraint equation can be re-arranged as

H2fD+
3

2
H2ΩmD =

1

a2
→ ∴ D =

1

H2fΣ
, Σ := 1+

3

2

Ωm
f
−→
Ωm=1

5

2
, δv = −

∆φv
H2fΣ

. (4.191)

The remaining perturbations are

χv := aβv , κv ≡ −
∆

a2
χv ≡ δ̇v ≡ −

∆φv
a2HΣ

, χv =
φv
HΣ

, (4.192)

where we used Ḋ = HfD.

• Newtonian correspondence.— The velocity and the gravitational potential in the Newtonian dynamics correspond to
the conformal Newtonian gauge quantities: U i = −v,iχ and αχ = −φχ. The simplest way to derive the relations is the
gauge transformation from the comoving gauge to the conformal Newtonian gauge:

γv = γχ ≡ 0 → L = 0 , vχ = 0− T , φχ = φv −HT , (4.193)

0 = βχ = βv − T → T = βv =
1

a
χv =

φv
HΣ

, (4.194)

such that we derive

vχ = −βv = −
1

a
χv = −

φv
HΣ

, φχ = φv +Hvχ =

(
1− 1

Σ

)
φv = χ̇v , (4.195)

where we used a useful relation in ΛCDM

1 ≡ 1

a

( a

HΣ

)·
=

1

Σ
+

(
1

HΣ

)·
→ 1− 1

Σ
=

(
1

HΣ

)·
. (4.196)

The remaining relations are then

δv = δχ + 3Hvχ , ∆φχ = −3

2
H2Ωmδv , ∆vχ = δ′v , κv = δ̇v = θ . (4.197)

4Note that the solution D is unique with the boundary condition D = 0 at t = 0. So, the usual growth function D̂ that is normalized today is
then D̂ := D(t)/D(t0) and the density is δv(t) = D̂(t)δv(t0).
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4.4.6 Cosmological Gravitational Waves

In the absence of anisotropic pressure Π
(t)
αβ in the tensor component, the cosmological gravitational waves C(t)

αβ propa-

gate freely in an expanding universe. By decomposing the transverse traceless tensor C(t)
αβ in terms of two polarization

basis esαβ(k), with s = +,×, the propagation equation (4.144) becomes

ḧsk + 3Hḣsk −
1

a2
∆hsk = 0 , hs′′k + 2Hhs′k −∆hsk = 0 , (4.198)

where we assumed K = 0 and used

h
(t)
αβ = 2C

(t)
αβ(η,k) ≡ e

+
αβ(k)h

+(η,k) + e×αβ(k)h
×(η,k) , esαβ(k)e

s′αβ(k) = 2δss
′
. (4.199)

Mind the normalization convention for the polarization basis with s = +,×. By change of variable vsk := ahsk, the
propagation equation becomes

(vsk)
′′ +

(
k2 − a′′

a

)
vsk = 0 , H2 +H′ = a′′

a
. (4.200)

On large scales (k2 ≪ a′′/a), we can readily find the solution

1

a
vsk = hsk = cs1(k) + cs2(k)

∫
dt

a3
, (4.201)

where the first one is the growing mode and is constant on large scales. Furthermore, by assuming Λ = 0 and a constant
equation of state, the exact solution can be obtained in terms of Bessel functions as

hsk = c1
Jν(kη)

(kη)ν
+ c2

Yν(kη)

(kη)ν
, ν :=

3(1− w)
2(1 + 3w)

. (4.202)

In the absence of parity violating process, two different polarization states behave statistically in the same way, and we
can omit the superscript s. In RDE (a ∝ η, ν = 1/2), two solutions are

(vsk)
′′ + k2vsk = 0 , vsk ∝ sin(kη) , cos(kη) , hsk ∝

1

η
sin(kη) ,

1

η
cos(kη) . (4.203)

In MDE (a ∝ η2; ν = 3/2), two solutions are the spherical Bessel functions

(vsk)
′′ +

(
k2 − 2

η2

)
vsk = 0 , vsk ∝ ηj1(kη) , ηy1(kη) , hsk ∝

1

η
j1(kη) ,

1

η
y1(kη) . (4.204)

The second solution blows up at k → 0. Given the normalization convention, the total power spectrum of the cosmological
gravitational waves is

PT = 2(Ph+ + Ph×) = Ph+2 + Ph−2 , (4.205)

where Ph±2 is the power in the helicity basis.
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5 Standard Inflationary Models
Standard single field inflationary models provide a mechanism for the inflationary expansion (horizon problem) and the
perturbation generation (initial condition) by a single scalar field, called inflaton. The scalar field Lagrangian has the
canonical kinetic term, but various single field models differ in the scalar field potential, according to which the inflaton
rolls over. In most cases, the slow-roll condition is adopted, such that the scalar field dynamics is insensitive to the details
of the scalar field potential.

The outcome of the standard model predictions is as follows: The curvature fluctuations are scale-invariant (ns ≃ 1)
and highly Gaussian. The tensor fluctuations are also scale-invariant, but its amplitude is very small compared to the
scalar fluctuations. The running of the indices is very small. Recent observations confirm these predictions and constrain
the parameters with high precision. However, beyond these basic features/constraints, we do not have a solid model for
inflation. Note that the energy scale of inflation is beyond the validity of the standard model physics, and most inflationary
models have many theoretical issues, when quantum corrections are considered.

5.1 Single Scalar Field

5.1.1 Scalar Field Action

In addition to the Einstein-Hilbert action for gravity, we consider the action for a scalar field with canonical kinetic term
and the potential V :

S =

∫ √
−g d4x

[
c4

16πG
R− 1

2
∂µϕ ∂

µϕ− V (ϕ)

]
, (5.1)

where the kinetic term in the Minkowski spacetime reduces to the standard form

−1

2
ηµν∂µϕ ∂νϕ =

1

2

[
(∂tϕ)

2 − (∇ϕ)2
]
. (5.2)

The Euler-Lagrange equation yields the equation of motion for the scalar field

□ϕ− V,ϕ = 0 , □ := gµν∇µ∇ν , (5.3)

and the energy-momentum tensor is

Tµν = gµνLϕ − 2
δLϕ
δgµν

= ϕ,µϕ,ν −
1

2
gµν ϕ,ρϕ

,ρ − V gµν . (5.4)

The equation of motion in the Minkowski spacetime reduces to the usual:

ϕ̈−∇2ϕ+ V,ϕ = 0 . (5.5)

It is often in literature that the Planck unit is adopted, and there exist two different conventions:

M2
pl :=

1

8πG
, m2

pl :=
1

G
. (5.6)

The recent analysis of the Planck CMB mission yields that the scalar fluctuation amplitude As ≃ 2.1 × 10−9 and hence
the energy scale of the inflation is

As =
H2

8π2εM2
pl

= 2.1× 10−9 , ∴ H = 4.1× 10−4
√
εMpl . (5.7)
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5.1.2 Background Relation and Evolution Equations

In the background, the non-vanishing fluid quantities for a scalar field are the energy density and the pressure

ρϕ =
1

2
ϕ̇2 + V (ϕ) , pϕ =

1

2
ϕ̇2 − V (ϕ) , (5.8)

and accounting for the covariant derivative the equation of motion can be obtained as

ϕ̈+ 3Hϕ̇+ V,ϕ = 0 , ϕ′′ + 2Hϕ′ + a2V,ϕ = 0 . (5.9)

The Friedmann equation for a scalar field is

H2 =
ρϕ

3M2
pl

, Ḣ = −
ρϕ + pϕ
2M2

pl

= − ϕ̇2

2M2
pl

, H2 + Ḣ =
ä

a
=

1

3M2
pl

(
V − ϕ̇2

)
, (5.10)

where we assumed a flat universe and no cosmological constant. If the potential energy of the scalar field is the dominant
energy component of the Universe or the kinetic energy is smaller than the potential energy (slow-roll), the expansion
of the Universe is accelerating ä > 0. Various inflationary models with slow-roll condition state that the potential is
sufficiently flat, such that V (ϕ) is nearly constant during the inflationary period and ϕ slowly evolves (rolls over V ).

5.1.3 de-Sitter Spacetime

The de-Sitter universe is a highly symmetric spacetime, defined as a background FRW universe with no matter and
constant Hubble parameter. A constant Hubble parameter leads to an exponential expansion, and we parametrize the
de-Sitter solution as

H2 :=
Λ

3
, a(t) = eHt = − 1

Hη
, a = (0,∞) , t = (−∞,∞) , η = (−∞, 0) , (5.11)

where the scale factor is normalized at t = 0. The slow-roll parameter for the de-Sitter spacetime is

ε := − Ḣ

H2
=

d

dt

(
1

H

)
= 0 . (5.12)

5.1.4 Slow-Roll Parameters

In general, inflationary models slightly deviate from the de-Sitter phase (ε ̸= 0), and its deviation is captured by the
slow-roll parameter:

ε =
d

dt

(
1

H

)
= − Ḣ

H2
, Ḣ = −H2ε ,

ä

a
= H2 + Ḣ = H2(1− ε) , (3− ε)H2 =

V

M2
pl

.

(5.13)
To solve the horizon problem, we know that the comoving horizon has to decrease in time

0 >
d

dt

(
1

H

)
= − ä

a2H2
= −1− ε

a
. (5.14)

The background evolution of a scalar field can be re-phrased in terms of the slow-roll parameters as

ε =
1

2

ϕ̇2

H2M2
pl

=
3

2
(1 + w) , ϕ̇2 = ρϕ + pϕ . (5.15)

If we ignore the second derivative of the field (ϕ̈ ≃ 0) in the equation of motion,

3Hϕ̇ ≃ −V,ϕ , ρϕ + pϕ ≃
(
V,ϕ
3H

)2

, (5.16)
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the slow-roll parameters are then further related to the slow-roll parameters defined in terms of the derivatives of the
potential also used below)

εV :=
M2

pl

2

(
V,ϕ
V

)2

≃ ε , ηV :=M2
pl

(
V,ϕϕ
V

)
≃ ε+ η , ξV :=

M4
plV,ϕV,ϕϕϕ

V 2
, (5.17)

where we used the second slow-roll parameter

η := − ϕ̈

Hϕ̇
. (5.18)

In fact, one can show the exact relation

ε = εV

(
1− 4

3
εV +

2

3
ηV

)
. (5.19)

In literature, different convention for slow-roll parameters are often used, in particular, in terms of Hubble flow:

ε1 := ε , ε2 :=
1

H

d ln ε

dt
= 2(ε− η) , εi+1 :=

1

H

d ln εi
dt

. (5.20)

Furthermore, the inflation has to last for some time, such that the modes we measure in CMB have to expand at least by
40−60 e-folds. So it is convenient to define the number of e-folding for a given mode as the number of e-folds the mode k
expanded from the horizon crossing until the end of inflation,1

N(ϕk) := ln
aend
a(ϕk)

=

∫ tend

tk

H dt , k = aH , (5.21)

where tk is the time the k-mode crosses the horizon. Using the e-folding number, we can express the slow-roll parameters
as

dN = Hdt = d ln a , ε = −d lnH
dN

, εi+1 =
d ln εi
dN

. (5.22)

5.1.5 Linear-Order Evolution

Given the energy momentum tensor, we can derive the fluid quantities for a scalar field:

δρϕ = ϕ̇δ̇ϕ− ϕ̇2α+ V,ϕδϕ = δρv − 3Hϕ̇ δϕ , δρv := δρ− ρ′v , (5.23)

δpϕ = ϕ̇δ̇ϕ− ϕ̇2α− V,ϕδϕ = δρv − 3c2sHϕ̇ δϕ , vϕ =
δϕ

ϕ′
, (5.24)

e := δp− c2s δρ = (1− c2s)δρv , πϕαβ = qϕα = 0 , (5.25)

where we used the following relation and the sound speed is defined as

ρ̇ϕ = ϕ̇(ϕ̈+ V,ϕ) = −3Hϕ̇2 , ṗϕ = ϕ̇(ϕ̈− V,ϕ) = ϕ̇(2ϕ̈+ 3Hϕ̇) , c2s :=
ṗϕ
ρ̇ϕ

= −1− 2ϕ̈

3Hϕ̇
. (5.26)

Note tht the sound speed defined above is negative, and in particular c2s ≃ −1 for slow-roll inflation. The entropy
perturbation is gauge-invariant, and it is non-negligible for scalar field (e ≃ 2δρv for slow roll models). Therefore, the
comoving gauge corresponds to the uniform field gauge for the single-field models:

φv = φ−Hv = φ−Hδϕ

ϕ̇
= φδϕ . (5.27)

Other useful gauge-invariant variables are

δ̃ϕ = δϕ− ϕ′T , δϕφ := δϕ− ϕ̇

H
φ , δϕχ := δϕ− ϕ̇χ . (5.28)

1The end of inflation is a bit ill-defined, as we do not have a concrete model. However, in terms of N we can safely use the condition that the
slow-roll parameter becomes order unity ε ≃ 1.
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The equation of motion for a scalar field is then

δϕ̈+ 3Hδϕ̇+

(
V,ϕϕ +

k2

a2

)
δϕ = ϕ̇(α̇+ κ) + (2ϕ̈+ 3Hϕ̇)α . (5.29)

There exists a very important conservation law on super horizon scales. First, we define a gauge-invariant variable Φ,
which is essentially the comoving-gauge curvature:

Φ := φv −
K/a2

4πG(ρ+ p)
φχ =

H2

4πG(ρ+ p)a

( a
H
φχ

)·
+

2H2Π

ρ+ p
, (5.30)

where the last equality can be readily verified by using Eq. (4.163). Taking the time derivative of the definition of Φ and
using the Einstein equations (4.166) and (4.163) to remove φ̇χ and v̇χ, we derive the governing equation for

Φ̇ =
H

4πG(ρ+ p)

c2s
a2

∆φχ −
H

ρ+ p

(
e+

2

3a2
∆Π

)
, (5.31)

where the sound speed is c2s := ṗ/ρ̇ and the entropy perturbation is δp =: c2sδρ + e. The derivation is fully based on
the Einstein equation (no conservation equation at the perturbation level), so that the fluid components are for the total
energy-momentum tensor. For the inflaton field with Π = 0 and e = (1− c2s)δρv, we define the physical sound speed cA
for inflaton

Φ̇ =
H

4πG(ρ+ p)

c2A
a2

∆φχ , c2A∆φχ := c2s∆φχ − 4πGa2(1− c2s)δρv = ∆

[
1 + (1− c2s)

3K

∆−1

]
φχ , (5.32)

so that the physical sound speed for the inflaton is cA ≡ 1 in a flat universe. In other words, when the scalar field is treated
as a fluid, cA appears in the fluid equations as the proper sound speed, instead of c2s, and it is a relativistic object. It is
clear that the comoving-gauge curvature is conserved on super horizon scales.

5.2 Quantum Fluctuations in Quadratic Action

The background relation describes the inflationary expansion, and the equation of motion we derived describes the evolu-
tion of the perturbations at the linear order. Here we will derive their statistical properties. However, before we proceed,
we need to better understand the structure of the theory. Even for the standard inflationary models of a single field, the
theory is not a free-field, but an interacting field theory.

This can be illustrated as follows. To simplify the calculations, we choose the comoving gauge

0 = vϕ =
δϕ

ϕ′
, ϕ(x) = ϕ̄(t) , ζ := φv = φδϕ , (5.33)

and it coincides with the uniform field gauge. Our main variable for scalar fluctuation is then the comoving gauge
curvature ζ, as the scalar field is uniform. We can expand the action perturbatively to give

S = S0[ϕ̄, ḡab] + S2[ζ
2] + S3[ζ

3] + · · · , H = H0 +Hint , Hint =
∑
i

Fi(ε, η, · · · )ζ3(τ) + · · · , (5.34)

where the background action S0 defines the background evolution and its slow-roll parameters. Here we will study the
quadratic action S2 in great detail to derive the power spectrum of the scalar and tensor fluctuations, and the quadratic
action is indeed a free-field action in the de-Sitter background (or with small deviations around it). However, remember
that the full theory is interacting, and we cannot use the free-field theory to quantize the fluctuations, if we go beyond the
quadratic action or compute the high-order correlation functions.

5.2.1 Quadratic Action for Scalars

To derive the linear-order equation of motion, we need to expand the action to the quadratic in perturbations. To simplify
the calculations, we choose the comoving gauge. After some integrations by part of the quadratic action, the quadratic
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action for scalars in the comoving gauge becomes2

S(2) =
1

2

∫
dt d3x a3

ϕ̇2

H2

[
ζ̇2 − 1

a2
(∇ζ)2

]
=

1

2

∫
dη d3x

[
(v′)2 − (∇v)2 + z′′

z
v2
]
, (5.35)

where we integrate by part, Mpl = 1, and we defined the canonically-normalized (Mukhanov-Sasaki) variable

v := zζ , ζ := φv , z2 := a2
ϕ̇2

H2
= 2a2ε . (5.36)

At the quadratic action, scalar, vector, and tensor do not mix, while they do mix in general quadratic terms. In the action,
their indices need to be contracted, e.g., ϕi|jhij , and an integration by parts yields vanishing contribution due to the
divergence free condition for vector and tensor contributions. The Lagrangian now takes the form of the simple harmonic
oscillator, but with time-dependent mass term

m2(η) := −z
′′

z
−→
dS

−a
′′

a
= − 2

η2
. (5.37)

where we took the de-Sitter limit (ε = z = 0). The canonical momentum and the Hamiltonian are then

π =
δL
δv′

= v′ , H = πv′ − L =
1

2

[
(v′)2 + (∇v)2 +m2v2

]
. (5.38)

The equation of motion for the Mukhanov-Sasaki variable is the Klein-Gordon equation:(
□−m2

)
v = 0 , v′′k + ω2

kvk = 0 , ω2
k := k2 +m2 , vk = v∗−k . (5.39)

The mode functions take the simple solution for the time-dependence under the assumption that ωk ≃ k is time-
independent in the limit η → −∞:

vk(η) ≡ v+k e
iωkη + v−k e

−iωkη := v+k (η) + v−k (η) , v+k = (v−−k)
† , (5.40)

where the amplitude of the mode functions are undetermined. Therefore, the general solution can be written as

v(x) =

∫
d3k

(2π)3
(
v+k e

iωkη + v−k e
−iωkη

)
eik·x =

∫
d3k

(2π)3

(
v+−k e

−ikx + v−k e
ikx
)
, k := (ωk,k) . (5.41)

5.2.2 Canonical Quantization

So far, we have derived a classical solution of the quadratic action for scalars. By promoting the Mukhanov-Sasaki field v
and its canonical momentum field π to quantum fields, we need to impose the canonical quantization relation (ℏ = 1)

[v̂(η,x), π̂(η,y)] = iδ3D(x− y) , [v̂(η,x), v̂(η,y)] = [π̂(η,x), π̂(η,y)] = 0 , (5.42)

where we work in the Heisenberg picture for the time-dependent operators. Apparent from the notation, we want to define
the creation and annihilation operators as

v−k := âkv
−
k ,

(
v−k
)†

= v+−k = â†kv
+
k , (v−k )

∗ = v+k , (5.43)

such that we derive

v̂(x) =

∫
d3k

(2π)3

(
â†kv

+
k e
−ikx + âkv

−
k e

ikx
)
=

∫
d3k

(2π)3

[
â†kv

+
k (η) e

−ik·x + âkv
−
k (η) e

ik·x
]
, (5.44)

where we defined
v±k (η) := v±k e

±iωkη . (5.45)

2Here, “scalars” are used to refer to the scalar fluctuations, not to be confused with the scalar field.
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By substituting into the canonical quantization relation, we can derive that the ladder operators indeed satisfy the standard
quantization relation at the equal time

[âk, â
†
k′ ] = (2π)3δ3D(k− k′) , [âk, âk′ ] = [â†k, â

†
k′ ] = 0 , (5.46)

if the normalization for the mode functions is properly chosen

W [v−k , v
+
k ] := v−k v

+′
k − v

−′
k v

+
k := i . (5.47)

With the properly normalized operators, we obtain the usual relations

âk|0⟩ = 0 , ⟨0|0⟩ = 1 , |nk⟩ =
√

2Ek
n!

[(â†k)
n]|0⟩ , (5.48)

where
√
2E is put to make it Lorentz invariant. One can quantize the field, starting with the time-independent Harmonic

oscillators, then applying the Heisenberg picture with the free-field Hamiltonian, as in Peskin & Schröder.

5.2.3 Vacuum Expectation Value

While we imposed the normalization condition for the mode functions v±k (η) in terms of their Wronskian, the physical
vacuum is yet to be fully determined, due to the arbitrariness in the mode functions. Note that we can change v±k and âk
together, while v̂(x) remains unchanged. Consider a different set of mode functions u±k that are related to the original
mode functions as

u−k (η) = αkv
−
k (η) + βkv

+
k (η) , (5.49)

and construct the creation and annihilation operators b̂±k with u±k

u−k := b̂ku
−
k . (5.50)

Using this relation, we can write the operator v̂ and its canonical momentum π̂ in terms of b̂k and b̂†k. These two sets of
quantum operators are then related as by, so called, the Bogolyubov transformation:

âk = α∗k b̂k + βk b̂
†
−k , â†k = αk b̂

†
k + β∗k b̂−k , |αk|2 − |βk|2 = 1 , (5.51)

where the normalization for the transformation coefficients is due to the Wronskian normalization. Note that the vacuum
defined by one set of operators âk is not the vacuum with respect to the other set of operators b̂k. To properly determine
the physical vacuum, we need to fix the mode function completely.

In terms of the mode functions, the Hamiltonian in Minkowski spacetime is

Ĥ =

∫
d3x Ĥ , Ĥ =

1

2

[
π̂2 + (∇v̂)2

]
, m→ 0 . (5.52)

Using the expression for the mode function in Eq. (5.44), we derive the Hamiltonian

Ĥ =
1

2

∫
d3k

(2π)3

[(
(v+′k )2 + k2(v+k )

2

)
â†kâ

†
−k +

(
(v−′k )2 + k2(v−k )

2

)
âkâ−k +

(
â†kâk + âkâ

†
k

)(
|v−′k |

2 + k2|v−k |
2

)]
,

(5.53)
acting on the vacuum |0⟩ as

Ĥ|0⟩ = 1

2

∫
d3k

(2π)3

[(
(v+′k )2 + k2(v+k )

2

)
â+k â

+
−k +

(
|v−′k |

2 + k2|v−k |
2
)
(2π)3δ3D(0)

]
|0⟩ . (5.54)

The vacuum |0⟩ is an eigenstate of the Hamiltonian, and indeed the first round bracket vanishes. The remaining term in
the Hamiltonian should be minimized by a proper choice of the mode function. Given the normalization of the Wronskian
and the time dependence of the mode function, the physical mode function is then found to be3

W [v−k , v
+
k ] = 2ik|v−k |

2 = i , v−k (η) =
1√
2k

e−ikη . (5.55)

Therefore, we derive the vacuum expectation values〈
0|v̂†kv̂k′ |0

〉
= (2π)3δ3D(k− k′)Pv(k) , Pv(k) = |v−k |

2 =
1

2k
. (5.56)

3In fact, given the Bogolyubov transformation, one cannot use the time-dependence ±iωkη to find the physical mode function, rather one has to
find a general solution with v−k = Ake

iBkη .
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5.2.4 Scalar Fluctuations

Now we consider the time-dependent mass term in the equation of motion, and following the same procedure we pick the
vacuum that corresponds to the solution in the Minkowski spacetime as the modes were deep inside the horizon in the far
past

vk(η) =
1√

2ωk(η)
e−iωk(η)η , lim

η→−∞
vk(η) =

1√
2k

e−ikη , (5.57)

and this choice of the mode function is called the Bunch-Davis vacuum. Note that with time-dependent mass term (or
spacetime) the vacuum defined as the minimum of the Hamiltonian is also evolving in time, i.e., the vacuum state a
moment ago is not a vacuum, but a state of particles.

To the zero-th order in the slow-roll approximation (ε = 0), the inflationary period is the de-Sitter spacetime, in which

m2(η) = −a
′′

a
= − 2

η2
, ω2

k = k2 − 2

η2
, (5.58)

and we can derive the exact solution for the mode functions:

vk(η) =
e−ikη√

2k

(
1− i

kη

)
. (5.59)

When the k-mode is stretched beyond the horizon, the amplitude of the mode function is

lim
kη→0

vk(η) =
1

i
√
2

1

k3/2η
, lim

kη→0
k3|vk|2 =

1

2η2
=
a2H2

2
, (5.60)

and the power spectra of the mode function and the comoving-gauge curvature are

Pv ≡ |vk|2 =
a2H2

2k3
, ∆2

ζ :=
k3

2π2
Pζ =

1

2a2ε
∆2
v =

H2

8π2ε
. (5.61)

5.2.5 Tensor Fluctuations: Gravity Waves

We can repeat the exercise for the scalar fluctuations to derive the tensor fluctuations. The tensor perturbations are
decomposed in terms of two helicity eigenstates as

hij := 2C
(t)
ij = 2h(±2)Q

(±2)
ij , (5.62)

and the quadratic action for tensor is

S(2) =
M2

pl

8

∫
dη d3x a2

[
(h′ij)

2 − (∇hij)2
]
=
∑
s=±2

∫
dη d3k

a2

4
M2

pl

[
(hs′k )

2 − k2(hsk)2
]
. (5.63)

Using the Mukhanov-Sasaki variable for tensor fluctuations, the quadratic action is

vsk :=
a

2
Mplh

s
k , S(2) =

∑
s=±2

1

2

∫
dη d3k

[
(vs′k )

2 − k2(vsk)2 +
a′′

a
(vsk)

2

]
, m2 = −a

′′

a
, (5.64)

where we integrate by part and used H2 + H′ = a′′/a. The quadratic action for tensor is identical, and we can readily
derive the tensor power spectrum

Pv =
(aH)2

2k3
, PT := 2Phsk = 2

(
2

aMpl

)2

Pv =
4

k3
H2

M2
pl

. (5.65)

The amplitude of the tensor power spectrum is the energy scale of the inflation in the early Universe, and its ratio to the
scalar power spectrum is

r :=
∆2
t

∆2
s

=
8

M2
pl

ϕ̇2

H2
= 16ε , (5.66)

slow-roll suppressed. Note that GR is a proper low-energy EFT of quantum gravity and hence there are no issues in
quantizing gravity in the standard QFT as above. The problems arise only when the energy scale approaches the Planck
scale.
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5.3 Predictions of the Standard Inflationary Models

5.3.1 Consistency Relations

For the standard single field inflationary models with the slow-roll approximation, we summarize the predictions for scalar
fluctuations

Pζ =

(
2π2

k3

)
As , As :=

H2

8π2εM2
pl

=
1

24π2ε

V

M4
pl

, (5.67)

ns − 1 :=
d ln k3Pζ
d ln k

= (−2ε− ε2)(1− ε)−1 ≃ 2ηV − 6εV , (5.68)

the predictions for tensor fluctuations

PT =
4

k3
H2
∗

M2
pl

=

(
2π2

k3

)
AT , AT :=

2

π2
H2

M2
pl

=
2V

3π2M4
pl

, nt :=
d ln k3PT
d ln k

≃ −2ε , (5.69)

and the consistency relations

r :=
AT
As

=
8ϕ̇2∗
H2
∗
= 16ε = −8nt . (5.70)

By measuring the power spectrum amplitude and its slope for both scalar and tensor fluctuations, we can ensure that the
fluctuations are indeed generated by a single field inflaton or rule out the standard inflationary models. There exist other
predictions in the standard inflationary models (and of course, for the beyond the standard models) that can be used to test
models, such as the primordial non-Gaussianity and so on.

5.3.2 Lyth Bound

Given the definition of the e-folds, we can further manipulate it by using the inflaton as a time clock:

N(ϕk) =

∫ ϕend

ϕk

dϕ
H

ϕ̇
=

∫ ϕend

ϕk

dϕ

Mpl

√
2ε

, r = 16ε =
8

M2
pl

(
dϕ

dN

)2

, (5.71)

and this relation further implies that the excursion of the inflaton field is related to the tensor-to-scalar ratio as

∆ϕk
Mpl

≃
∫ Ncmb

Nend

dN

√
r

8
, (5.72)

where ε(ϕend) ≡ 1. To solve the horizon problem, the mode k should have expanded at least 40−60 in e-folds. So, this
consistency relation (Lyth, 1997) implies that an inflationary field variation of the order of the Planck mass is needed to
produce r > 0.01. From the theoretical point of view, this sets the upper bound on the amplitude of gravitational waves.
Indeed, the standard inflationary model predictions are very small.

Note that the uncertainty in e-folds N is due to our ignorance in the reheating era: After the inflationary period ends,
the inflaton field decays into other particles and reheats the Universe. This period is expected to be described by a matter-
dominated era, as the inflaton oscillates around the minimum of the potential, effectively acting as a matter. However, we
know very little about this period.

The current observational constraint is

As ≃ 2.2× 10−9 , ns ≃ 0.96 , ε ≃ 0.01 . (5.73)

indicating the energy scale of the inflation is

AT =
2V

3π2M4
pl

= 16εAs , H2 =
V

3M2
pl

= ε
(
2× 1014 GeV

)2
. (5.74)
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5.3.3 A Worked Example

Here we consider a very simple inflationary model with a power-law potential:

V =
1

2
m4−αϕα , (5.75)

where the mass m and the slope α are the free parameters of the model. It chaotically starts everywhere at any time in
field configurations, and its predictions are then

εV =
α2

2

(
Mpl

ϕ

)2

, ηV = α(α− 1)

(
Mpl

ϕ

)2

, (5.76)

N ≃
∫

dϕ

M2
pl

V

V ′
=
ϕ2 − ϕ2end
2M2

plα
, r ≃ 16εV , ns − 1 ≃ 2ηV − 6εV . (5.77)

Approximating ϕend ≃ 0, we further derive

N ≃ 1

2α

(
ϕ

Mpl

)2

, εV ≃
α

4N
, ηV =

α− 1

2N
, 1− ns ≃

α+ 2

2N
, r ≃ 4α

N
. (5.78)

5.4 Adiabatic Modes and Isocurvature Modes

• Adiabatic modes.— Assuming a flat Universe, we can arrange Eq. (5.31) to show

φ̇v = Ξ− H

ρ+ p

k2

a2

(
c2s

4πG
φχ −

2

3
Π

)
, Ξ :=

˙̄ρ δp− ˙̄p δρ

3(ρ̄+ p̄)2
≡ − He

ρ+ p
, (5.79)

where the entropy perturbation is gauge invariant at the linear order

e := δp− c2sδρ . (5.80)

If the pressure of a fluid is just a function of the density, it satisfies the adiabatic condition (Ξ ≡ e ≡ 0):

p = p(ρ) = p(ρ̄) +
dp

dρ

∣∣∣∣
0

δρ+ · · · = p̄+ c2sδρ+ · · · , c2s :=
˙̄p
˙̄ρ
, e := 0 . (5.81)

Therefore, in the limit k → 0, if Ξ = 0 vanishes, the comoving-gauge curvature perturbation is conserved, regardless of
contents in the Universe.

lim
k→0

φv = constant in time if Ξ = 0 . (5.82)

Indeed, the adiabatic condition Ξ = 0 is satisfied for the matter-dominated era, the radiation-dominated era, and for the
single field inflation,4 which are essentially cases with a single fluid.

For multi-fluid cases, the adiabatic condition can be imposed for individual components, fluctuating at the same rate
at a given point:

δρi
˙̄ρi

=
δρtot
˙̄ρtot

=
δpi
˙̄pi

=
δptot
˙̄ptot

=: −φv I ,
δa

1 + wa
=

δb
1 + wb

for ∀ a, b , (5.83)

and in the limit k → 0 we can indeed derive the adiabatic condition

I :=
1

a

∫ t

ti

dt a(t) , vχ ≡ −
1

a
I φv . (5.84)

This is a non-trivial condition, as opposed to the single-fluid case. For example, consider radiation and matter components:

˙̄ργ = −4Hρ̄γ , ˙̄ρm = −3Hρ̄m , Ξ =
Hρ̄mρ̄γ

(3ρ̄m + 4ρ̄γ)2
(4δm − 3δγ) , (5.85)

4It vanishes only in the limit k = 0 for single field models.
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such that φv is conserved, only when the adiabatic condition

δm =
δγ

1 + 1/3
(5.86)

is satisfied in the limit k → 0. Even for single-field inflationary scenarios, there should have existed many other matter
fields, and some energy transfer to these fields are inevitable. However, these non-adiabatic perturbations decay fast as
the inflation proceeds, and they become exponentially suppressed when these matter fields dominate the energy budget
during the reheating era. For adiabatic case, the curvature fluctuations for each fluid are identical:

φδa := φ+
δa

3(1 + wa)
= φδb , for ∀ a, b . (5.87)

• Isocurvature/entropy mode.— Isocurvature perturbations represent non-adiabatic fluctuations that arise from a decay
of a single source (or the inflaton). With the specific definition of SXY below, one can set up the initial conditions for N -
component fluids in terms of one adiabatic fluctuation and N − 1 isocurvature fluctuations (no isocurvature fluctuations
for a single component). Note, however, that this independent setup is valid only at the initial time. The evolution
of isocurvature perturbations depends not only on inflationary dynamics, but also on post-inflationary evolution. For
example, if all particles thermalize after inflation, all isocurvature perturbations become adiabatic perturbations eventually.
The details are in CPT.pdf.

The isocurvature perturbations and the entropy perturbations are interchangeably used, because they do represent the
perturbations between species and it does conserve the curvature. In practice, the entropy perturbations are parametrized
by two free parameters at some pivot scale k0 (0.002/Mpc in WMAP), i.e., ratio α of the isocurvature to the adiabatic
perturbations in their amplitudes and their correlation β

PS
Pζ

:=
α

1− α
, β :=

PSζ√
PSPζ

, (5.88)

where the relative entropy perturbation (or specific entropy) is defined as

SXY ≡ δ
(
nX
nY

)/(
nX
nY

)
=
δnX
nX
− δnY

nY
=

δX
1 + wX

− δY
1 + wY

. (5.89)

By defining the gauge-invariant curvature perturbation in the uniform-density gauge

φδ = φ−Hδρ

ρ̇
= φ+

δ

3(1 + w)
, (5.90)

we can readily show that the entropy perturbation is gauge invariant and conserved on large scales in the absence of mutual
interactions.

SXY = 3
(
φXδ − φYδ

)
. (5.91)

In literature, it is often the case that the reference species is set for photons, and three extra components are considered
such as baryon, cdm, neutrino (sometimes neutrino velocity) for isocurvature perturbations. In the most general case, we
need to consider SXγ with X = b, cdm, ν in addition to Pζ , such that the initial power spectra are characterized by
4-4 matrix of auto and cross power spectra, each of which is described by the initial amplitude and the slope. A pure
isocurvature model is ruled out, because the Sachs-Wolfe plateau is six times larger than in the adiabatic case and the
contributions on small scales are further suppressed Tl ∝ (k/keq)

−2 in the isocurvature case.

62



6 Weak Gravitational Lensing

6.1 Gravitational Lensing by a Point Mass

In classical mechanics, the gravitational interaction due to a point mass M provides a perturbation along the transverse
direction to a test particle moving with the relative speed vrel:

∆v⊥ =
2GM

b vrel
, (6.1)

where G is the Newton’s constant and b is the transverse separation (or the impact parameter). The prediction for the light
deflection angle α̂ in Einstein’s general relativity is well-known to follow the same result in classical mechanics, but with
additional factor two:

α̂ =
4GM

b c2
= 8.155× 10−3 arcsec

(
M

M⊙

)(
b

AU

)−1
. (6.2)

Given the deflection angle α̂, we can readily write down the lens equation in terms of the angular diameter distances

Dsŝ = Dsn̂−Dlsα̂ , ŝ = n̂− θ2E/n̂ , (6.3)

where the Einstein radius is

θE =

√
4GM

c2
Dls
DlDs

= 2.853× 10−3 arcsec

(
M

M⊙

)(
Dl
kpc

)−1/2(
1− Dl
Ds

)1/2

. (6.4)

For a point mass lens and a point source, two lensed image positions are readily obtained as

n̂1 =
1

2

(
ŝ+

√
ŝ2 + 4θ2E

)
, n̂2 =

1

2

(
ŝ−

√
ŝ2 + 4θ2E

)
< 0 , n̂1 + n̂2 = ŝ , (6.5)

and when the source and the lens are aligned, the lensed images form a ring with radius θE .

• microlensing, probe of MACHOs or exoplanets

6.2 Standard Weak Lensing Formalism

6.2.1 Lens Equation and Distortion Matrix

This light deflection due to a point mass can be generalized to derive the standard weak lensing formalism by considering
the gravitational potential fluctuation ψ = −GM/r of the general matter distribution ρ (but still a single lens plane),
instead of a point mass (ψ indeed corresponds to the metric fluctuation αχ). The lensing potential Φ is the line-of-sight
integration of the metric fluctuation,

Φ :=
1

c2
Dls
DlDs

∫
dz 2ψ , (6.6)

and using the Poisson equation, we can relate the lensing potential with the surface density Σ as

∇2ψ = 4πGρ̄a2δ , ∇̂2Φ = 2
Σ

Σc
, Φ(n̂) =

∫
d2n̂′

Σ

πΣc
ln |n̂− n̂′| , (6.7)

where we ignored the boundary term when the Poisson equation is integrated and the critical surface density is defined as

Σ−1c :=
4πG

c2
DlsDl
Ds

, Σc = 1.663× 106 hM⊙ pc−2
(
Ds
Dls

)(
Dl

h−1Mpc

)−1
. (6.8)

Though the lensing potential is formally divergent for a point mass, its angular derivative is well defined:

α̂ =

(
DlDs
Dls

)
∇⊥Φ =

Ds
Dls
∇̂Φ , (6.9)
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such that the lens equation becomes
ŝ = n̂− ∇̂Φ , (6.10)

where ∇̂ is the angular gradient. When the lensing material is distributed over the redshift, the lensing potential is then
obtained by integrating the potential fluctuation over the line-of-sight distance as

Φ =

∫ r̄s

0
dr̄

(
r̄s − r̄
r̄sr̄

)
2ψ ≡

∫ r̄s

0
dr̄

g(r̄, r̄s)

r̄2
2ψ , (6.11)

where we switched to a comoving angular diameter distance r̄ and we defined the weight function g (or lensing kernel)
for later convenience

g := r̄2
(
r̄s − r̄
r̄sr̄

)
, (6.12)

which peaks at the half the distance to r̄s and vanishes at both ends r̄ = 0 and r̄ = r̄s. When the background source
galaxies are also spread over some redshift with the distribution ng(rs), the lensing potential can be readily generalized
by replacing the weight function with

g := r̄2
∫ ∞
r̄

dr̄s

(
r̄s − r̄
r̄sr̄

)
ng(r̄s) , Φ =

∫ ∞
0

dr̄
g(r̄)

r̄2
2ψ , 1 =

∫ ∞
0

dr̄s ng(r̄s) , (6.13)

where the upper limit for the integration is indeed r̄(z =∞) and the source distribution is normalized.1

Using the lens equation, the distortion matrix D (or sometimes called the amplification matrix) is defined as

Dij ≡
∂si
∂nj

= Iij −
(

Φ11 Φ12

Φ21 Φ22

)
, Φij := ∇̂j∇̂iΦ , (6.14)

where I is the two-dimensional identity matrix and we defined a short hand notation for the angular derivatives of the
lensing potential. The distortion matrix is conventionally decomposed into the trace, the traceless symmetric and the
anti-symmetric matrices:

D := I−
(
κ 0
0 κ

)
−
(
γ1 γ2
γ2 −γ1

)
−
(

0 ω
−ω 0

)
, det D = (1− κ)2 − γ2 + ω2 , (6.15)

where the trace is the gravitational lensing convergence κ and the symmetric traceless part is the lensing shear γ =√
γ21 + γ22 :

κ ≡ 1− 1

2
Tr D =

1

2
(Φ11 +Φ22) , ω ≡ D21 − D12

2
= 0 , (6.16)

γ1 ≡ D22 − D11

2
=

1

2
(Φ11 − Φ22) , γ2 ≡ −

D12 + D21

2
= Φ12 = Φ21 . (6.17)

Since the distortion matrix in Eq. (6.14) is symmetric, the rotation ω vanishes in the standard formalism at all orders.
The standard lensing formalism is based on the lens equation and the lensing potential in Eq. (6.10). However, the

source angular position ŝ := (θ + δθ, ϕ + δϕ) is gauge-dependent, and the lensing potential that is responsible for the
angular distortion (δθ, δϕ) is also gauge-dependent. Indeed, we already know that 2ψ in Eq. (6.10) should be (αχ−φχ) to
match the leading terms for δθ and the Poisson equation in Eq. (6.23) is indeed an Einstein equation with ψ there replaced
by −φχ.2 Furthermore, there exist no contributions from the vector and the tensor perturbations in the standard lensing
formalism. Finally, while the derivations in this subsection assume no linearity, all formulas of the standard lensing
formalism turn out to be valid only at the linear order in perturbations.

1Sometimes it is normalized when integrated over redshift.
2Additional condition of a vanishing anisotropic pressure is needed to guarantee αχ = −φχ and hence the consistency in the lensing equation.
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6.2.2 Convergence and Shear

By using
1

2
Φij ≡

1

2
∇̂i∇̂jΦ =

∫ ∞
0

dr̄
g(r̄)

r̄2
∇̂i∇̂jψ , (6.18)

we derive the individual components of the distortion matrix

κ =

∫ ∞
0

dr̄
g(r̄)

r̄2
∇̂2ψ , γ1 =

∫ ∞
0

dr̄
g(r̄)

r̄2

(
∇̂2

1 − ∇̂2
2

)
ψ , γ2 = 2

∫ ∞
0

dr̄
g(r̄)

r̄2
∇̂1∇̂2ψ ,

(6.19)
where the indices i, j = 1, 2 represent the angular components.

While the distortion matrix is defined in terms of angles, it is often assumed in literature that the line-of-sight direction
is along z-axis (n̂//ẑ, i.e., θ = 0), and two angles are aligned with x-y plane. In such a setting, consider two small angular
vectors at the source position subtended respectively by dθ and dϕ at the observer position

∆sdθi = Di1dθ , ∆sdϕi = Di2dϕ . (6.20)

The solid angle at the source subtended by these two angular vectors is then related to the solid angle at the observer as

dΩs =
∣∣∣∆sdθ ×∆sdϕ

∣∣∣ = det D dθdϕ = det D dΩo , (6.21)

and hence the gravitational lensing magnification µ is then

µ−1 ≡ dΩs
dΩo

= det D = (1− κ)2 − γ2 + ω2 ≃ 1− 2κ . (6.22)

For this reason, the distortion matrix is often called the inverse magnification matrix.
Using the Poisson equation in cosmology,

∇2ψ = 4πGρ̄a2δm =
3H2

0

2
Ωm

δm
a
, (6.23)

the gravitational lensing convergence can be computed in terms of the matter density fluctuation δm in the comoving
gauge as

κ =

∫ ∞
0

dr̄
g(r̄)

r̄2
∇̂2ψ =

3H2
0

2
Ωm

∫ ∞
0

dr̄ g(r̄)
δm
a
, (6.24)

where we used the Laplacian

∇2 =
1

r̄2
∂

∂r̄

(
r̄2
∂

∂r̄

)
+

1

r̄2
∇̂2 , (6.25)

and ignored the boundary terms. The dominant contribution to the convergence arises at half the distance to the source
due to the lensing kernel g(r̄, r̄s).

6.2.3 Angular Decomposition and Power Spectrum

The convergence field is

κ(n̂) :=

∫ ∞
0

dr̄
g(r̄)

r̄2
∇̂2ψ =

3H2
0

2
Ωm

∫ ∞
0

dr̄ g(r̄)
δm
a
, (6.26)

and the convergence can be angular decomposed as

κlm =

∫
d2n̂ Y ∗lm(n̂)

∫ ∞
0

dr̄
g(r̄)

r̄2
∇̂2

[∫
d3k

(2π)3
4π
∑
LM

iLjL(krl)YLM (n̂)Y ∗LM (k̂)Tψ(k, rl)R(k)

]

= 4πil
∫
dk k2

2π2

[
−l(l + 1)

∫ ∞
0

dr̄
g(r̄)

r̄2
Tψ(k, r̄)jl(kr̄)

] ∫
dΩk
4π

Y ∗lm(k̂)R(k) , (6.27)
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or in terms of the matter fluctuation as

κlm = 4πil
∫
dk k2

2π2

[
3H2

0

2
Ωm

∫ ∞
0

dr̄
g(r̄)

a
Tδ(k, r̄)jl(kr̄)

] ∫
dΩk
4π

Y ∗lm(k̂)R(k) , (6.28)

where the square bracket in the first line is just a Fourier transformation and we expanded the exponential in terms of
plane waves. By defining the convergence transfer function

T κl (k) := −l(l + 1)

∫ ∞
0

dr̄
g(r̄)

r̄2
Tψ(k, r̄)jl(kr̄) =

3H2
0

2
Ωm

∫ ∞
0

dr̄
g(r̄)

a
Tδ(k, r̄)jl(kr̄) , (6.29)

the angular power spectrum is then obtained as

Cl =
1

2l + 1

∑
m

|κlm|2 = 4π

∫
d ln k ∆2

R(k)

∣∣∣∣T κl (k)∣∣∣∣2 . (6.30)

Using the flat sky approximation (or the Limber approximation; and see LoVerde and Afshordi (2008) for the discus-
sion)

jl(x)→
√

π

2l + 1
δD
(
l +

1

2
− x
)
, (6.31)

we can simplify the transfer function as

T κl (k) = −l(l + 1)

∫ ∞
0

dr̄
g(r̄)

r̄2
Tψ(k, r̄)×

1

k

√
π

l + 1/2
δD
(
l + 1/2

k
− r̄
)

= −l(l + 1)

√
π

l + 1/2

g(r̄)

kr̄2
Tψ(k, r̄) ,

(6.32)
where kr̄ = l + 1/2 should be imposed. With the other transfer function manipulated in terms of δD(k) as

T κl (k) = −l(l + 1)

∫ ∞
0

dr̄
g(r̄)

r̄2
Tψ(k, r̄)×

1

r̄

√
π

l + 1/2
δD
(
l + 1/2

r̄
− k
)
, (6.33)

the angular power spectrum can be simplified as

Cl = l2(l + 1)2
∫
dr̄

(
g2(r̄)

r̄6

)
Pψ

(
k =

l + 1/2

r̄
, r̄

)
. (6.34)

Using the Poisson equation

Pψ =

(
3H2

0

2
Ωm

)2
Pm
a2k4

=

(
3H2

0

2
Ωm

)2
Pm
a2

(
r̄

l + 1/2

)4

, kr = l +
1

2
, (6.35)

the angular power spectrum in terms of the matter density fluctuation is

Cl =

(
24l2(l + 1)2

(2l + 1)4

)(
3H2

0

2
Ωm

)2 ∫
dr̄

(
g2(r̄)

a2r̄2

)
Pm

(
k =

l + 1/2

r
, r̄

)
, (6.36)

where the whole round bracket in front with l is approximately one.

6.2.4 Flat-Sky Computation

Assuming that the survey area is small, we will utilize the angular Fourier transformation in Eq. (3.17) by again computing

Φ(l) =

∫
d2θ e−il·n̂

∫ ∞
0

dr̄
g(r̄)

r̄2
2ψ =

∫ ∞
0

dr̄
g(r̄)

r̄2

∫
d2θ

∫
dk∥

2π

∫
d2k⊥
(2π)2

eik∥r̄ ei(k⊥−l/r̄)·r̄n̂ 2ψ(k, r̄)

=

∫ ∞
0

dr̄
g(r̄)

r̄4

∫
dk∥

2π
2ψ

(
k⊥ =

l

r̄

)
eik∥r̄ , r̄⊥ = r̄n̂ , (6.37)
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such that the lensing observables are

κ(l) = − l
2

2
Φ(l) , γ1(l) = −

l21 − l22
2

Φ(l) = cos 2ϕl κ(l) , γ2(l) = −l1l2 Φ(l) = sin 2ϕl κ(l) ,

(6.38)
and the angular power spectra can be readily derived as

Pκ(l) =
l4

4
PΦ(l) , Pγ1 = cos2 2ϕl Pκ(l) , Pγ2 = sin2 2ϕl Pκ(l) , (6.39)

where we used l = (l1, l2) = l(cosϕl, sinϕl). By computing

⟨Φ(l1)Φ(l2)⟩ =
∫ ∞
0

dr̄1
g(r̄1)

r̄41

∫ ∞
0

dr̄2
g(r̄2)

r̄42

∫
dk∥

2π
4Pψ

(
k⊥ =

l1
r̄1

)
eik∥(r̄1−r̄2)(2π)2δD

(
l1
r̄1

+
l2
r̄2

)
, (6.40)

we obtain the angular power spectrum of the lensing potential as

PΦ(l) =

∫ ∞
0

dr̄
g2(r̄)

r̄6
4Pψ

(
k⊥ =

l

r̄

)
, (6.41)

where the line-of-sight integration over k∥ gives rise to another Dirac delta function.
From the relation of the lensing observables, we find it useful to construct E and B-modes as

E(l) := cos 2ϕl γ1(l) + sin 2ϕl γ2(l) , B(l) := − sin 2ϕl γ1(l) + cos 2ϕl γ2(l) . (6.42)

We can readily derive

E(l) = κ(l) , B(l) = 0 , PE(l) = Pκ(l) , PB(l) = PEB(l) = 0 , (6.43)

in the absence of any systematics and/or physics other than the gravitational lensing, such that it provides a consistency
check of the measurements, where the convergence power spectrum is again related to the matter power spectrum as

Pκ(l) =

(
3H2

0

2
Ωm

)2 ∫ ∞
0

dr̄
g2(r̄)

r̄2a2
Pm

(
k⊥ =

l

r̄

)
. (6.44)

Now we compute the angular correlation function by Fourier transforming the angular power spectrum. Out of two shear
components, we construct three angular correlation functions as

wij(θ) := ⟨γi(0)γj(θ)⟩ =
∫

d2l

(2π)2
eil·θ

(
cos2 2ϕl cos 2ϕl sin 2ϕl

cos 2ϕl sin 2ϕl sin2 2ϕl

)
Pκ(l) (6.45)

=
1

2

∫ ∞
0

dl l

2π
Pκ(l)

(
J0(lθ) + J4(lθ) 0

0 J0(lθ)− J4(lθ)

)
, (6.46)

where Jn is the Bessel function and used its integral representation

J0(x) =

∫
dϕ

2π
eix cosϕ , J4(x) =

∫
dϕ

2π
eix cosϕ cos 4ϕ . (6.47)

6.2.5 Worked Examples

For the simplest case, where the lens and the source are at two definite redshift slices, the lensing observables can be
written in a polar coordinate as

2κ = Φrr +
Φr
r

+
Φθθ
r2

= 2
Σ

Σc
, (6.48)

2γ1 = cos 2θΦrr −
2 sin 2θ

r
Φrθ −

cos 2θ

r
Φr −

cos 2θ

r2
Φθθ +

2 sin 2θ

r2
Φθ , (6.49)

2γ2 = sin 2θΦrr +
2 cos 2θ

r
Φrθ −

sin 2θ

r
Φr −

sin 2θ

r2
Φθθ −

2 cos 2θ

r2
Φθ , (6.50)

γ2 := γ21 + γ22 =
1

4

(
Φrr −

Φr
r
− Φθθ

r2

)2

+

(
Φrθ
r
− Φθ
r2

)2

. (6.51)
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For an axisymmetric lens, the lensing observables are further simplified, and the convergence and shear are

2κ = ∇̂2Φ = Φrr +
Φr
r

= 2
Σ

Σc
, γ =

1

2

(
Φr
r
− Φrr

)
=

Φr
r
− Σ

Σc
=

Σ̄(< r)− Σ

Σc
, (6.52)

where Σ̄(< r) is the average surface density enclosed in radius r and Σ̄(< r) = Φr/r from the first relation. The
magnification is determined by the surface density of the lensing material, and the gravitational shear is set by the excess
surface density of the enclosed mass ∆Σ := Σ̄(< r)− Σ(r).

For a point mass, the convergence and the shear are

ψ = −GM
r

, ∇2ψ = 4πGMδD(x) , κ =
Σ

Σc
=
MδD(R)

Σc
, (6.53)

γ =
Σ̄(< R)− Σ

Σc
=

Σ̄

Σc
=
θ2E
θ2

, Σ̄ :=
M

πR2
. (6.54)

The lensing magnification is then

µ−1 = det D = 1− Φrr −
Φr
r

+
ΦrrΦr
r

=
s

r

∂s

∂r
, (6.55)

where we used the lens equation
s = r − Φr , ∂rs = 1− Φrr . (6.56)

For a point mass, there exist two lensed images. When two images are not spatially resolved, the magnification of the
lensed images is the sum of two, and we derive the master equation for microlening

µ =

(
s

r

∂s

∂r

)−1
1

+

(
s

r

∂s

∂r

)−1
2

=
u2 + 2

u
√
u2 + 4

, u :=
s

θE
. (6.57)

6.2.6 Galaxy-Galaxy Lensing

Galaxy-galaxy lensing is used to refer to the two-point correlation of the galaxies at one point and the lensing signal
measured by background galaxies at the other point. In short, it measures the galaxy-matter cross-correlation. Compared
to the cosmic shear measurements, the advantage here is that we have well-defined lenses (lens galaxies) in the foreground,
such that the shear measurements in galaxy-galaxy lensing are less susceptible to other systematics.

Assuming spherical symmetry, we can readily derive the lensing convergence and the shear as

κ(θ) =
Σ(θ)

Σc
, γ(θ) = κ̄(θ)− κ(θ) , (6.58)

where the “comoving” critical surface density is3

Σc(z1, z2) =
c2

4πG

rs
rlrls

1

1 + zl
= 1.663× 1018 hM⊙Mpc−2

rs
rl

(
rls

h−1Mpc

)−1 1

1 + zl
. (6.59)

Since we are measuring the excess matter around galaxies, the lensing observables are related to the projected galaxy-
matter correlation function:

w(R) =

∫ ∞
−∞

dz ξgm

(
r =

√
R2 + z2

)
=

∫ ∞
0

dk⊥k⊥
2π

Pgm(k⊥) J0(k⊥R) , (6.60)

where the integration along the line-of-sight is performed. However, note that this is valid only on small angle, as the
observed angular separation θ, not the physical separation R is kept fixed. Under the small-angle approximation, the
convergence at a given separation can be derived as

κ(θ) =
Σ(θ)

Σc
=

∫
dz

ρ̄m
Σc

(1 + ξgm) =
ρ̄m
Σc

w(R) , (6.61)

3Multiply by (1+ zl)
2 for physical critical surface density. Note that sometimes people use the physical angular diameter distances, while using

comoving coordinates for other quantities, in which (1 + zl)
2 appears in the equation, instead of (1 + zl).
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and the remaining lensing observables are

κ̄(θ) =
2π

πθ2

∫ θ

0
dθ θ κ(θ) =

3H2
0Ωm
2

(r̄s − r̄l)r̄l
alr̄s

∫
dk⊥ k⊥

2π
Pgm(k⊥; r̄l)

2J1(k⊥r̄θ)

k⊥r̄θ
, (6.62)

γT (θ) = κ̄(θ)− κ(θ) = 3H2
0Ωm
2

(r̄s − r̄l)r̄l
alr̄s

∫
dk⊥ k⊥

2π
Pgm(k⊥; r̄l) J2(k⊥r̄θ) , (6.63)

∆Σ(R) = ΣcγT = ρ̄m

∫ ∞
−∞

dz

[
2

R2

∫ R

0
dR′ R′ ξgm(R

′, z)− ξgm(R, z)
]
. (6.64)

6.3 Weak Lensing Observables

6.3.1 Ellipticity of Galaxies

The ellipticity ϵ of galaxies is measured in terms of its semi-major axis a and the semi-minor axis b or in terms of the axis
ratio q as

ϵ :=
a2 − b2

a2 + b2
≡ 1− q2

1 + q2
≡

δ − 1
2δ

2

1− δ + 1
2δ

2
≃ δ , q :=

b

a
:= 1− δ . (6.65)

In an idealized case of round galaxies, the ellipticity ϵ, the axis ratio q, and the distortion δ are a measure of gravitational
lensing effects of intervening matter, and they are equivalent in the weak lensing regime. In observations, the center of
the galaxy and its ellipticity moment are measured by using some weight function W [Iν(n̂)] of the observed intensity as

n̂o :=

∫
d2n̂ n̂ W [n̂]∫
d2n̂ W [n̂]

, Mij :=

∫
d2n̂ (n̂− n̂o)i(n̂− n̂o)j W [n̂]∫

d2n̂ W [n̂]
, (6.66)

where the simplest weight function is just the observed intensity W = I[n̂]. Given the ellipticity moment, we can define
the ellipticity vector and the position angle as

ϵ :=

(
Mxx −Myy

Mxx +Myy
,

2Mxy

Mxx +Myy

)
:= (ϵ+, ϵ×) = ϵ(cos 2Θ, sin 2Θ) , tan 2Θ ≡ 2Mxy

Mxx −Myy
. (6.67)

Note that the ellipticity vector is headless, such that it is identical under 180 degree rotation, or spin 2. Since only the
ellipticity vector matters, the ellipticity momentsM are often defined without the denominator.

6.3.2 Lensing Polarization

The ellipticity moments of the source galaxies would be what we measure in the absence of gravitational lensing. However,
the gravitational lensing changes the observed ellipticity moments. Now, for simplicity, we will ignore rotation (ω = 0)
and express the distortion matrix in our coordinate:

D = I−
(
κ 0
0 κ

)
−
(
γ1 γ2
γ2 −γ1

)
, (6.68)

and the magnification matrix is then the inverse of the distortion matrix:

Mij := D−1ij =
1

|D|

(
1− κ+ γ1 γ2

γ2 1− κ− γ1

)
, µ := |M| = |D|−1 = 1

(1− κ)2 − γ2
. (6.69)

Further, assuming the surface brightness conservation due to gravitational lensing (i.e., no frequency change), the observed
ellipticity moments are related to those in the source rest-frame as

MI
ij :=

∫
d2n̂ n̂in̂jW [n̂] =

∫
|M|d2ŝ Mikŝk Mjlŝl W [ŝ] ≃ µMikMjlMs

kl , (6.70)

where we assumed n̂o = 0 and the source size is small that the magnification matrix is constant over the area. Using the
definition of the source ellipticity moments

Ms
11 =

1 + ϵs+
2
M , Ms

22 =
1− ϵs+

2
M , Ms

12 =
ϵs×
2
M , M :=Ms

11+Ms
22 ,

(6.71)
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the observed ellipticity can be derived in terms of the magnification matrix as

ϵI+ =
(1 + ϵs+)M

2
11 + 2ϵs×M12(M11 −M22)− 2ϵs+M

2
12 − (1− ϵs+)M2

22

(1 + ϵs+)M
2
11 + 2ϵs×M12(M11 +M22) + 2ϵs+M

2
12 + (1− ϵs+)M2

22

, (6.72)

ϵI× =
2M12

[
ϵs×M12 + (1− ϵs+)M22

]
+ 2M11

[
(1 + ϵs+)M12 + ϵs×M22

]
(1 + ϵs+)M

2
11 + 2ϵs×M12(M11 +M22) + 2M2

12 + (1− ϵs+)M2
22

, (6.73)

where the relation is exact. In terms of the lensing convergence and shear,4 we derive

ϵI+ =
ϵs+
[
(1− κ)2 + γ21 − γ22

]
+ 2ϵs×γ1γ2 + 2γ1(1− κ)

2ϵs+γ1(1− κ) + 2ϵs×γ2(1− κ) + (1− κ)2 + γ21 + γ22
, (6.74)

ϵI× =
ϵs×
[
(1− κ)2 − γ21 + γ22

]
+ 2ϵs+γ1γ2 + 2γ2(1− κ)

2ϵs+γ1(1− κ) + 2ϵs×γ2(1− κ) + (1− κ)2 + γ21 + γ22
. (6.75)

For circular sources, whereMs
11 =Ms

22 ̸= 0, andM12 = 0 (or ϵs+ = ϵs× = 0), the observed ellipticity becomes

ϵI+ =
2γ1(1− κ)

(1− κ)2 + γ21 + γ22
≃ 2γ1 , ϵI× =

2γ2(1− κ)
(1− κ)2 + γ21 + γ22

≃ 2γ2 , (6.76)

where we expanded to the linear order in the last step. Assuming there is no ellipticity correlation of the source galaxies

⟨ϵ+⟩ = ⟨ϵ×⟩ = ⟨ϵ+ϵ×⟩ =
1

2

〈
ϵ2
〉
⟨sin 4ϕ⟩ = 0 , (6.77)〈

ϵ2+
〉
=
〈
ϵ2×
〉
=
〈
ϵ2
〉 〈

cos2 2ϕ
〉
=

1

2

〈
ϵ2
〉
, (6.78)

the observed ellipticity correlation becomes

ξϵI+
(θ) =

〈
ϵI+(0)ϵ

I
+(θ)

〉
= ξδ(θ)

(
1− σ2ϵ +

1

4
σ4ϵ

)
= ξϵI×

, (6.79)

to be compared to the typical ellipticity
σϵ = ⟨ϵs⟩1/2 ≃ 0.3 . (6.80)

• modified gravity, no galaxy bias

4With rotation, the magnification matrix is not symmetric, M12 ̸= M21.
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7 CMB Temperature Anisotropies
In this chapter, we will perform very simple calculations to gain intuitive understanding of the observed CMB anisotropies.
We adopt the conformal Newtonian gauge and ignore the vector and tensor perturbation:

α→ αχ , φ→ φχ , β = γ = χ ≡ 0 , U → vχ , Vα = −vχ,α + v(v)α → −vχ,α .
(7.1)

7.1 Basics

In the early Universe, the radiation dominates the overall energy density, and due to high pressure the fluctuations cannot
grow within the horizon. In particular, the tight-coupling between the baryons and the photons leads to a single fluid, or the
baryon-photon fluid, oscillating with a unique sound speed. As a fluid, the density (monopole) and the velocity (dipole)
characterize the fluid, and the higher multipoles are negligible. The monopole and the dipole are oscillating in units of
the sound speed of the fluid, and the first harmonics (or the first acoustic peak) is the fundamental mode that matches
the distance the fluid can travel at the sound speed for the age of the universe at the time of the recombination. Once the
baryons recombine at later time, the photons are released and free-stream to the observer today. This free-streaming of the
monopole and the dipole generates the temperature anisotropies we measure today, and they show the acoustic oscillations
of the baryon-photon fluid at the recombination epoch.

7.2 Collisionless Boltzmann Equation for Photons

To describe the angular multipoles of the observed anisotropies, we need a phase space information beyond the fluid
approximation. Its evolution is described by the Boltzmann equation.

7.2.1 Geodesic Equation

For simplicity, we consider fictitious observers, who are at rest in a given coordinate:

[et]
µ =

1

a
(1− αχ, 0) , [ei]

µ =
1

a
[0 , δαi (1− φχ)] , (7.2)

where we ignored the rotation of tetrad vectors against FRW coordinates. These observers will measure the energy and
momentum of the CMB photons in their rest frame. The physical momentum is written in capital letters in their internal
coordinates as

P a = (E,P i) , E = −pµ[et]µ , P i = pµeiµ , E2 = m2 + P 2 , (7.3)

where pµ is the photon four-momentum in a FRW coordinate. Using the tetrad expression, we derive the physical mo-
mentum in FRW coordinates

pη =
(1− αχ)E

a
, pα =

1

a
[Pα − φχ Pα] , (7.4)

and the covariant momentum is

pη = −a(1 + αχ)E , pα = aPα(1 + φχ) . (7.5)

In the background universe, the geodesic equation yields

0 = pνpµ;ν = pηpµ′ + Γ̄µρσp
ρpσ 7→ 0 = pηpη′ +Hpηpη +Hpαpα , 0 = pηpα′ + 2Hpηpα , (7.6)

and the last equation says

pα ∝ 1

a2
, Pα ∝ 1

a
, (7.7)
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the physical momentum for both massless and massive particles in the background universe redshift as 1/a. In the
presence of perturbations, these relations change, so it is convenient to define the “comoving momentum q” and “comoving
energy ε” that remain unchanged in the background universe

q := aP , ε := aE =
√
q2 + a2m2 , qi := qni . (7.8)

In terms of the comoving quantities, the momentum in FRW coordinates is now

pη =
(1− αχ)ε

a2
, pα =

1

a2
(qα − φχqα) . (7.9)

To compute the change in the comoving momentum as the particle propagates, we need to solve the geodesic equation in
an inhomogeneous universe:

dqα
dη

= −ε αχ,α − φ
′
χqα −

qβqγ

ε

(
φχ,γδαβ − φχ,αδβγ

)
, (7.10)

where we use the background geodesic equation (valid for massive & massless)

d

dη
=

∂

∂η
+
qβ

ε

∂

∂xβ
form ̸= 0 , ε̄′ =

a2Hm2

ε
, (7.11)

d

dη
=

∂

∂η
+ nα

∂

∂xα
=:

d

dλ
form = 0 ,

d

dΛ
= p̄η

∂

∂η
+ p̄α

∂

∂xα
=

q

a2
d

dη
. (7.12)

For the linear-order evolution, the propagation direction is simply the straight path in the background universe, and only
the comoving momentum changes as

d ln q

dη
= −ε

q
αχ,∥ − φ

′
χ . (7.13)

Indeed, the comoving momentum is constant in the background. For massless particles (m = 0), the comoving momentum
is the comoving energy (q = ε), which further simplifies the propagation equation as

d

dη
(ln q + αχ) = (αχ − φχ)′ , (7.14)

and the whole quantity in the bracket is affected by the structure growth along the path. Note that the gravitational
potential αχ becomes more negative as the structure grows in time.

7.2.2 Collisionless Boltzmann Equation

The Liouville theorem in GR states that the phase-space volume dVp is conserved along the path parametrized by Λ with
momentum pµ. The total number particles in terms of the phase-space density F is

0 = ∆(dN) =

(
∂F

∂xµ
∆xµ +

∂F

∂pµ
∆pµ

)
dVp =

(
pµ
∂F

∂xµ
− Γµρσp

ρpσ
∂F

∂pµ

)
∆Λ dVp , (7.15)

it translates into the relativistic collisionless Boltzmann equation:

0 = pµ
∂F

∂xµ
− Γµρσp

ρpσ
∂F

∂pµ
, or 0 = pµ

∂F

∂xµ
+ Γρµσpρp

σ ∂F

∂pµ
, (7.16)

where we used the geodesic equation

0 =
d

dΛ
pµ + Γµρσp

ρpσ = pνpµ,ν + Γµρσp
ρpσ , 0 =

d

dΛ
pµ − Γρµσpρp

σ . (7.17)

Despite the presence of the Christoffel symbol, the equation is indeed invariant under diffeomorphisms. We further need
to impose the on-shell condition in the collisionless Boltzmann equation.
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The Boltzmann equation is further simplified, when we switch the variables (η, xα, pµ) to (η, xα, qi), where the on-
shell condition removes one component of the physical momentum:

0 = pµ
∂F

∂xµ
− Γµρσp

ρpσ
∂F

∂pµ
= pµ

∂F

∂xµ
+
dqi

dΛ

∂F

∂qi
, (7.18)

where the partial derivatives fix (xµ, qi), instead of (xµ, pµ). Splitting the distribution function F into the background f̄
and the perturbation f , the Boltzmann equation in the background is obtained as

F := f̄ + f , 0 = f̄ ′ , ∴ f̄ = f̄(q) , (7.19)

i.e., the phase-space distribution is constant in time and space, but only a function of the comoving momentum. The
linear-order perturbation equation can be derived as

0 = p̄ηf ′ + p̄αf,α +
dqi

dΛ

ni
q

df̄

d ln q
= p̄η

(
f ′ + nα

∂f

∂xα
+

df̄

d ln q

a2ni
q2

dqi

dΛ

)
, p̄η =

q

a2
. (7.20)

Noting that the last term is
a2ni
q2

dqi

dΛ
=
a2

q

d ln q

dΛ
=
d ln q

dη
, (7.21)

the collisionless Boltzmann equation can be simplified at the linear order in perturbations as

0 =
df

dη
+

df̄

d ln q

d ln q

dη
,

d

dη

[
f − df̄

d ln q
αχ

]
= − df̄

d ln q
(αχ − φχ)′ . (7.22)

7.2.3 Massless Particles

Here we consider photons and neutrinos, though neutrinos are massive, massless neutrinos are in most cases a good
approximation, with which equations are greatly simplified. We define the temperature anisotropies Θ

ρ = aT 4 = aT̄ 4

(
1 + 4

δT

T̄

)
+O(2) , Θ(n̂) :=

δT

T̄
=

1

4

δρ

ρ̄
. (7.23)

Assuming that the massless particles are in thermal equilibrium, the phase-space distribution function is

F (x) =

[
exp

(
E(x)

T (x)

)
− 1

]−1
=

[
exp

(
q

aT̄ (η)[1 + Θ(x)]

)
− 1

]−1
=: f̄ + f(x) , (7.24)

where the background distribution function depends only on q:

f̄(q) =

[
exp

(
q

aT̄ (η)

)
− 1

]−1
, T̄ (η) ∝ 1

a
. (7.25)

Expanding in perturbations,

F ≃ f̄
[
1 + f̄ eq/aT̄

q

aT̄
Θ
]
= f̄

(
1− d ln f̄

d ln q
Θ

)
,

d ln f̄

d ln q
= −f̄ eq/aT̄ q

aT̄
, (7.26)

we derive

∴ f(x) = − df̄

d ln q
Θ(x) ,

d

dη
f = − df̄

d ln q

dΘ

dη
, (7.27)

and the Boltzmann equation for photons is finally

d

dη
(Θ + αχ) = (αχ − φχ)′ . (7.28)
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7.3 Observed CMB Power Spectrum

7.3.1 Convention for Multipole Decomposition

Now we introduce the angular decomposition of the perturbation variables in the Boltzmann equation. Eventually, we
are interested in the angular power spectrum of the observed CMB anisotropies, but to this goal, we first decompose the
Boltzmann equation and evolve each multipole component. Schematically, consider a perturbation variable P (xµ, qi)
along the photon (background) path x = −r̄ni, which is related to the photon momentum qi = qni (ni is the photon
propagation direction, not the observed direction). It can be Fourier transformed,

P (xµ, q, n̂) =

∫
d3k

(2π)3
eik·x P (k, η, q, n̂) , xi = −r̄ni , (7.29)

and its Fourier component can be angular decomposed as

P (k, η, q, n̂) =:
∑
lm

(−i)l
√

4π

2l + 1
Plm(k, η, q)Ylm(n̂) , Plm(k, η, q) ≡ il

√
2l + 1

4π

∫
d2n Y ∗lm(n̂)P (k, η, q, n̂) .

(7.30)
Naturally, Plm are helicity eigenstates, such that under a rotation ϕ→ ϕ− Φ in a coordinate (k//z) they transform as

P̃lm = Plme
imΦ . (7.31)

Since we deal with only scalar, vector, tensor types of perturbations, the helicity eigenstates are limited to |m| ≤ 2 in such
coordinate. At the end, we will set x = 0 to derive the observed CMB anisotropies.

In literature, there exists a different convention (up to 2l + 1 factor) for decomposition in terms of the Legendre
polynomial Ll(x),

P (k, η, q, n̂) =:
∑
l

(−i)lPl(k, η, q) Ll(n̂ · k̂) =
∑
l

(−i)lPl(k, η, q)
∑
m

4π

2l + 1
Ylm(n̂)Y

∗
lm(k̂) . (7.32)

Consider that Fourier modes are assumed to be aligned as k//z, where the spherical harmonics is

Ylm(z) =

√
2l + 1

4π
δm0 . (7.33)

So we derive the correspondence to our decomposition convention:

P (k, η, q, n̂) =
∑
l

(−i)lPl(k, η, q) δm0

√
4π

2l + 1
Ylm(n̂) , ∴ Pl → Pl0 , (7.34)

and the decomposition with the Legendre polynomial in Eq. (7.32) is valid only for the scalar modes.

• Notation convention in literature.— A common notation convention: Seljak and Zaldarriaga (1996); Zaldarriaga and
Seljak (1997); Dodelson (2003)

P (k̂ · n̂) :=
∑
l

(−i)l(2l + 1)P̂l Ll(n̂ · k̂) , ∴ (2l + 1)P̂l ≡ Pl ≡ Pl0 . (7.35)

7.3.2 Free Streaming: Line-of-Sight Integration

Here we derive a formal integral solution by performing the line-of-sight integration by using the Boltzmann equa-
tion (7.28) and accounting for collisions. Before the recombination, the CMB photons interact with free electrons, and
free electrons are tightly coupled with protons, such that they form a baryon-photon fluid. The scattering process at this
low energy is described by the Thompson scattering with cross-section σT , which has quadrapolar dependence on the
angular distribution and generates polarization. Here we ignore this subtlety and use the simplified collisional process:

d

dη
(Θ + αχ) = (αχ − φχ)′ + τ ′ [Θ−Θ0] , (7.36)
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where Θ0 = δγ/4 is the monopole and the optical depth for photons is

τ(η) :=

∫ η0

η
dη aneσT , τ ′ = −aneσT . (7.37)

When the optical depth is large, the photon distribution Θ converges to the monopole (and the dipole) without any other
higher moments, i.e., the baryon-photon fluid. Once the collisional process becomes inefficient, the photon distribution
develops higher-order moments.

We want to derive an analytical solution for the temperature anisotropy Θ. Collecting Θ-terms and noting that the
derivative along the path in Fourier space becomes

d

dη
Θ(xµ)− τ ′Θ(xµ) = Θ′(xµ) + (∇r − τ ′)Θ(xµ) (7.38)

→ Θ′(k, η) + (ikµk − τ ′)Θ(k, η) = e−ikµkη+τ(η)
d

dη

[
Θ eikµkη−τ(η)

]
,

the Boltzmann equation can be re-arranged and integrated to yield the line-of-sight integral solution in Fourier space

Θ(k, η) = −
∫ η0

0
dη e−ikµk(η0−η)e−τ(η)

[
ikµkαχ +

(
φ′χ + τ ′Θ0

) ]
(k, η) , (7.39)

where we used τ(ηi) =∞, τ(η0) = 0, and Θ(k, ηi) at the initial time ηi = 0 was neglected due to τ(ηi). While dη is the
line-of-sight integration, the position dependence in Fourier space is taken out with eikx and the integrand is independent
of position.

By replacing the angular dependence µk with the derivative, the solution can be further simplified as

Θ = −
∫ η0

0
dη e−τ

[(
φ′χ + τ ′Θ0

)
+ αχ

d

dη

]
e−ikµk(η0−η) , ikµk →

d

dη
. (7.40)

Expanding the exponential term and performing the multipole decomposition in Eq. (7.30) on both sides, we derive

Θl

2l + 1
= −

∫ η0

0
dη e−τ

[ (
φ′χ + τ ′Θ0

)
+ αχ

d

dη

]
jl(x) = −

∫ η0

0
dη

[
e−τ

(
φ′χ + τ ′Θ0

)
− d

dη

(
e−ταχ

) ]
jl(x) , (7.41)

where x := k(η0 − η) and we integrated by part for the second term in the square bracket. By defining the visibility
function

g(η) := −τ ′e−τ , (7.42)

the integral solution can be rearranged as

Θl

2l + 1
=

∫ η0

0
dη

[
g (Θ0 + αχ) + e−τ (αχ − φχ)′

]
jl(x) , (7.43)

Since the visibility is close to a sharp Dirac delta function at the recombination time

g(η) ≃ δD(η − η⋆) , (7.44)

the temperature anisotropies are
Θl

2l + 1
≈ (Θ0 + αχ)⋆ jl[k(η0 − η⋆)] , (7.45)

where we ignored the time evolution of the potential term with the exponential damping. Evident from the equation, we in
fact consider only m = 0 scalar fluctuations. The observed temperature anisotropies are essentially the “monopole” (and
the “dipole” we ignored here) of the baryon-photon fluid at the recombination epoch η⋆, free-streaming to the observer
after the recombination and generating all angular multipoles.
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7.3.3 CMB Angular Power Spectrum on Large Scales

Finally, we need to connect our theoretical predictions to the observation. The observed CMB temperature can be har-
monically decomposed as

Θ(n̂) =:
∑
lm

almYlm(n̂) , alm ≡
∫
d2n̂ Y ∗lm(n̂)Θ(n̂) , (7.46)

and the observed CMB power spectrum can be obtained as

Cl =
1

2l + 1

∑
m

|alm|2 . (7.47)

We can derive a simple approximation to the observed power spectrum on large scales. At kη ≪ 1, the Boltzmann
equation yields

0 = Θ′0 + φ′χ , ∴ Θ0(k, η) = −φχ(k, η) + C(k) ≈ −φχ(k, η) +
3

2
φχ(k, ηi) , (7.48)

where the integral constant is fixed by the initial condition (we did not discuss here). The comoving-gauge curvature
perturbation is conserved on large scales all the time, while the conformal Newtonian gauge curvature transitions its value
from RDE to MDE. Using Eq. (4.156), we derive

φv =
5 + 3w

3(1 + w)
φχ =

3

2
φχ(ηi) =

5

3
φχ(η⋆) , ∴ φχ(ηi) =

10

9
φχ(η⋆) , Θ0(η⋆) =

2

3
φχ(η⋆) . (7.49)

The same calculation can be done for the matter density on large scales:

0 = δ′+3φ′χ , ∴ δ(η⋆) = −3φχ(η⋆)+
9

2
φχ(ηi) = 2φχ(η⋆) , (Θ0 + αχ)⋆ = −

1

3
φχ(η⋆) = −

1

6
δ(η⋆) . (7.50)

The CMBtemperature anisotropies are then

Θl

2l + 1
≈ (Θ0 + αχ)⋆ jl[k(η0 − η⋆)] ≈ −

1

3
φχ(η⋆)jl(kη0) , η∗ ≪ η0 , (7.51)

and the angular power spectrum is

CSW
l ≈

[
φχ(k, η∗)

3

]2
4π

∫
d ln k j2l (kη0) ∝

1

2l(l + 1)
, l(l + 1)CSW

l = constant , (7.52)

where the potential is constant on large scales and we used a mathematical identity∫ ∞
0

dk

k
j2l (k) =

1

2l(l + 1)
. (7.53)

From Θl, there exists a factor (2l+1)2, one of which is removed from the average in Cl and the other of which is removed
by the rotation of wave vectors. Implicitly our calculations were done in a coordinate (k//z) given n̂. This coordinate
system needs to be rotated back to the original, and this rotation matrix gives (2l + 1) factor in the power spectrum.

This constant angular power spectrum on large scales is called the Sachs-Wolfe plateau. At the recombination, the
overdense region with δ > 0 corresponds to the hotter spot Θ0 > 0, but the observed temperature today is colder due to
the energy loss by the gravitational redshift from the overdense region. Furthermore, given the level that the temperature
anisotropies are ∼ 10−5, the density growth from the recombination epoch z ∼ 1100 will lead only to δ ∼ 10−2, unless
it is further boosted by the nonlinear growth of dark matter prior to the recombination epoch.
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