

Theoretical Astrophysics and Cosmology

Spring Semester 2019 Prof. L. Mayer, Prof. J. Yoo

Exercise Sheet 9

Nastassia Grimm Rafael Souza Lima Issued: 10th May 2019 Due: 17th May 2019

Exercise 1: Linear-Order Gauge Transformations

- a) Derive the gauge transformations of the scalar perturbations α , β , φ , γ , U and v given in Eq. (3.24).
- b) Check that the scalar variables $\varphi_v, \varphi_{\chi}, v_{\chi}, \varphi_{\delta}, \delta_v$ and α_{χ} in Eq. (3.26) are gauge-invariant.

Hint: You can solve a) by using that $\delta_{\xi}g_{\mu\nu}(x) = -\mathcal{L}_{\xi}g_{\mu\nu}$ and $\delta_{\xi}u^{\mu} = -\mathcal{L}_{\xi}u^{\mu}$ as described in the lecture notes (all necessary definitions are given in Sections 3.1.1 and 3.1.2). Having solved a), the fact that φ_v , φ_{χ} , v_{χ} and α_{χ} are gauge-invariant follows easily. To show that φ_{δ} and δ_v are gauge-invariant, you additionally need to consider the gauge-transformation of the stress-energy tensor, $\delta_{\xi}T_{\mu\nu}$, to determine how δp and δ transform. Also, recall that $\rho \propto a^{3(1+w)}$ and $\rho + p = \rho(1+w)$.

Exercise 2: Riemann Tensor

Assuming a flat universe with no vector and tensor perturbations and adopting the conformal Newtonian gauge,

$$ds^{2} = -a^{2}(1+2\psi)d\eta^{2} + a^{2}(1+2\phi)\bar{g}_{\alpha\beta}dx^{\alpha}dx^{\beta}, \qquad (1)$$

derive the Christoffel symbols in Eqs. (3.67)-(3.71), the Riemann tensor in Eqs. (3.79)-(3.85), and the Ricci tensor and scalar in Eqs. (3.86)-(3.89).

Exercise 3: Einstein Equations

With the same conditions as in Exercise 2, derive the Einstein equations given Section 3.3.5 of the lecture notes:

$$\kappa = 3H\psi - 2\dot{\phi}, \qquad \Delta\phi + a\mathcal{H}\left(3H\psi - 3\dot{\phi}\right) = -4\pi G a^2 \delta\rho, \qquad \phi + \psi = -8\pi G \Pi, \quad (2)$$

where $\kappa = 12\pi G(\rho + p)av$ and Π is the scalar part of the anisotropic stress tensor.

Exercise 4: Curvature Perturbation

Show that the comoving-gauge curvature perturbation $\varphi_v = \phi - \mathcal{H}v$ is related to the Newtonian potential ϕ as

$$\varphi_v = \frac{5+3w}{3(1+w)}\phi\tag{3}$$

in the limit $k \to 0$. Assume that $\Pi = 0$.

Hint: In the limit $k \to 0$, you can assume $\dot{\phi} = 0$.