Spatial part of FRW metric describes an homogeneous and isotropic 3D hypersurface
in a 4D-spacetime (spherically symmetric 3-space like in Schwarzschild metric )
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Coefficients depend only on spherical coordinate r, as expected from isotropy.
With curvature signature k=-1, 0 or + 1 being related to scalar curvature R

of the surface (k= R/6 in 3-space)

k=0 is the euclidian space case = flat 3-surface (in 3- space it would be a plane).
k=+1 corresponds to 3-sphere;

and k=-1 to a 3-kyperbolic surface (saddle).
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Solutions of Friedmann equations for various values of
spatial curvature signature k
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Behaviour of scale factor and geometry of world models with arbitrary

values of Qu (always positive) and Qa (negative or positive).

Note there is no correspondence between open/flat/closed spatially and

open/closed in time as in Universes with Q=0
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Scale factor evolution for models with different Qy and Q.
From top to bottom (Q2wm, 24) = (0.3, 0.7), (0.3, 0), (1,0) , (2, 0)



