
1 Newtonian Perturbation Theory

1.1 Standard Newtonian Perturbation Theory

1.1.1 Summary of the Governing Equations

In Newtonian dynamics, fully nonlinear equation pressureless fluid (CDM and baryons) can be written down:
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The Euler equation can be split into one for divergence and one for vorticity. The vorticity vector r ⇥ v decays at the
linear order. At nonlinear level, if no anisotropic pressure and no initial vorticity, the vorticity vanishes at all orders.
However, in reality, the anisotropic pressure arises from shell crossing, generating vorticity on small scales, even in the
absence of the initial vorticity. Of course, baryons are not exactly pressureless; they form galaxies, and their feedback
effects are also important up to fairly large scales. These all modify the SPT equation.

• regime of validity, measurement precision, analytic vs numerical simulations, galaxy surveys

1.1.2 Basic Formalism

We consider multi-component fluids in the presence of isotropic pressure. In case of n-fluids with the mass densities %i,
the pressures pi, the velocities vi (i = 1, 2, . . . n), and the gravitational potential �, we have
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Assuming the presence of spatially homogeneous and isotropic but temporally dynamic background, we introduce fully
nonlinear perturbations as

%i = %̄i + �%i, pi = p̄i + �pi , vi = Hr+ ui , � = �̄+ �� , (1.3)

where H := ȧ/a, and a(t) is a cosmic scale factor. We move to the comoving coordinate x where
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In the following we neglect the subindex x. To the background order we derive
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where the second equation is derived by taking the divergence of the Euler equation and for the third equation we used
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The integration constant E can be interpreted s as the specific total energy in Newton’s gravity; in Einstein’s gravity we
have 2E = �Kc

2 where K can be normalized to be the sign of spatial curvature. Note the difference in the background
equation in Newtonian cosmology. The nonlinear governing equations can be expressed in terms of the perturbation
variables as
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By introducing the expansion ✓i and the rotation �!
! i of each component as
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we derive
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By introducing decomposition of perturbed velocity into the potential- and transverse parts as
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we have
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Combining equations above, we can derive
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These equations are valid to fully nonlinear order. The density fluctuation grows against the Hubble friction. Notice that
for vanishing pressure these equations have only quadratic order nonlinearity in perturbations.

• numerical simulations, baryons

1.1.3 Linear-Order and Second-Order Solutions

We will derive the solutions for a single pressureless medium (now we change notation ui ! v)
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where we now use v to represent the velocity perturbation. These are the governing equation for the cosmological N -body
simulations. The calculations are greatly simplified in Fourier space, and our convention is
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and we often use the identity:
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First, we derive the linear-order solution. The conservation equation yields
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At the linear order in perturbations, we can separate the time-dependence and the spatial-dependence, i.e., all different
Fourier modes evolve at the same rate, and the growth rate D satisfies
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, (1.19)
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where the (dimensionless) growth factor D(t) is normalized to unity at some early epoch t0 when the nonlinearities are
ignored �(t0,k) := �

(1)
1 (t0,k) ⌘ �̂(k). The linear-order solution for the density and the velocity divergence is then
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where the superscript indicates the perturbation order, the logarithmic growth rate f is approximately time-independent
and it is unity f = 1 in the matter-dominated era.

To derive the second-order solution, we need to Fourier decompose the source terms in the right-hand side of the
dynamical equation. At the second-order in perturbations, the quadratic terms represent the product of two linear-order
terms. Furthermore, the quadratic product in configuration space becomes the convolution in Fourier space:
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where we defined Q12 = Q1 +Q2. Using the source functions in Fourier space, we can solve the governing equations
for the density and the velocity divergence as
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• HW: derive the second-order solutions

1.1.4 General Solution

Beyond the linear order, the density and the velocity divergence grows in a nonlinear fashion, i.e., different Fourier modes
couple. By assuming the separability of the time and the spatial dependences, the standard perturbation theory (SPT)
takes a perturbative approach to the nonlinear solution:
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where q12···n ⌘ q1 + · · · + qn, �(n)(k) and ✓
(n)(k) are time-independent n-th order perturbations, F (s)
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the SPT kernels symmetrized over its arguments. With these decompositions in Fourier space, the LHS of the Newtonian
dynamical equations become
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where we utilized the relation between the growth factor and the growth rate Ḋ = HDf . The RHS of the Newtonian
dynamical equations are the convolution in Fourier space:
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where the vertex functions are defined as
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and the n-th order perturbation kernels An(k) and Bn(k) are
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with Q1 = q1···i and Q1 +Q2 = k.
Therefore, the two Newtonian dynamical equations become algebraic equations with the time-dependence removed:
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and the well-known recurrence formulas for the solutions are
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and similarly so for the SPT kernels
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