
4 Standard Inflationary Models
Standard single field inflationary models provide a mechanism for the inflationary expansion (horizon problem) and the
perturbation generation (initial condition) by a single scalar field, called inflaton. The scalar field Lagrangian has the
canonical kinetic term, but various single field models differ in the scalar field potential, according to which the inflaton
rolls over. In most cases, the slow-roll condition is adopted, such that the scalar field dynamics is insensitive to the details
of the scalar field potential.

The outcome of the standard model predictions is as follows: The curvature fluctuations are scale-invariant (ns ' 1)
and highly Gaussian. The tensor fluctuations are also scale-invariant, but its amplitude is very small compared to the
scalar fluctuations. The running of the indices is very small. Recent observations confirm these predictions and constrain
the parameters with high precision. However, beyond these basic features/constraints, we do not have a solid model for
inflation. Note that the energy scale of inflation is beyond the validity of the standard model physics, and most inflationary
models have many theoretical issues, when quantum corrections are considered.

4.1 Single Scalar Field

4.1.1 Scalar Field Action

In addition to the Einstein-Hilbert action for gravity, we consider the action for a scalar field with canonical kinetic term
and the potential V :
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where the kinetic term in the Minkowski spacetime reduces to the standard form
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The Euler-Lagrange equation yields the equation of motion for the scalar field
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and the energy-momentum tensor is

Tµ⌫ = gµ⌫L� � 2
�L�

�gµ⌫
= �,µ�,⌫ �

1

2
gµ⌫ �,⇢�

,⇢ � V gµ⌫ . (4.4)

It is often in literature that the Planck unit is adopted, and there exist two different conventions:
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4.1.2 Background Relation and Evolution Equations

In the background, the non-vanishing fluid quantities for a scalar field are the energy density and the pressure
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and the equation of motion becomes
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The Friedmann equation for a scalar field is
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where we assumed a flat universe and no cosmological constant. If the potential energy of the scalar field is the dominant
energy component of the Universe or the kinetic energy is smaller than the potential energy (slow-roll), the expansion
of the Universe is accelerating ä > 0. Various inflationary models with slow-roll condition state that the potential is
sufficiently flat, such that V (�) is nearly constant during the inflationary period and � slowly evolves (rolls over V ).
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4.1.3 de-Sitter Spacetime

The de-Sitter universe is a highly symmetric spacetime, defined as a background FRW universe with no matter and
constant Hubble parameter. A constant Hubble parameter leads to an exponential expansion, and we parametrize the
de-Sitter solution as

H
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where the scale factor is normalized at t = 0. The slow-roll parameter for the de-Sitter spacetime is
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4.1.4 Slow-Roll Parameters

In general, inflationary models slightly deviate from the de-Sitter phase (" 6= 0), and its deviation is captured by the
slow-roll parameter:
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To solve the horizon problem, we know that the comoving horizon has to decrease in time
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The background evolution of a scalar field can be re-phrased in terms of the slow-roll parameters as
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If we ignore the second derivative of the field (�̈ ' 0) in the equation of motion,
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the slow-roll parameters are then further related to the slow-roll parameters defined in terms of the derivatives of the
potential also used below)
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where we used the second slow-roll parameter
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In fact, one can show the exact relation
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In literature, different convention for slow-roll parameters are often used, in particular, in terms of Hubble flow:
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Furthermore, the inflation has to last for some time, such that the modes we measure in CMB have to expand at least by
40�60 e-folds. So it is convenient to define the number of e-folding for a given mode as the number of e-folds the mode k
expanded from the horizon crossing until the end of inflation,1

N(�k) := ln
aend
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Z
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1The end of inflation is a bit ill-defined, as we do not have a concrete model. However, in terms of N we can safely use the condition that the
slow-roll parameter becomes order unity " ' 1.
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where tk is the time the k-mode crosses the horizon. Using the e-folding number, we can express the slow-roll parameters
as
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4.1.5 Linear-Order Evolution

Given the energy momentum tensor, we can derive the fluid quantities for a scalar field:
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where we used the following relation and the sound speed is defined as
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Therefore, the comoving gauge corresponds to the uniform field gauge for the single-field models:
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The equation of motion for a scalar field is then
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Using the Einstein equations, we derive the governing equation for Mukhanov variable � (which is the comoving-
gauge curvature)
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where the derivation is fully general and we defined the physical sound speed cA for inflaton

c
2
A := c

2
s + 4⇡G

a
2

k2

e

'�

⌘ 1 . (4.29)

It is clear that the comoving-gauge curvature is conserved on super horizon scales.

4.2 Quantum Fluctuations in Quadratic Action

The background relation describes the inflationary expansion, and the equation of motion we derived describes the evolu-
tion of the perturbations at the linear order. Here we will derive their statistical properties. However, before we proceed,
we need to better understand the structure of the theory. Even for the standard inflationary models of a single field, the
theory is not a free-field, but an interacting field theory.

This can be illustrated as follows. To simplify the calculations, we choose the comoving gauge
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and it coincides with the uniform field gauge. Our main variable for scalar fluctuation is then the comoving gauge
curvature ⇣, as the scalar field is uniform. We can expand the action perturbatively to give
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where the background action S0 defines the background evolution and its slow-roll parameters. Here we will study the
quadratic action S2 in great detail to derive the power spectrum of the scalar and tensor fluctuations, and the quadratic
action is indeed a free-field action in the de-Sitter background (or with small deviations around it). However, remember
that the full theory is interacting, and we cannot use the free-field theory to quantize the fluctuations, if we go beyond the
quadratic action or compute the high-order correlation functions.

4.2.1 Quadratic Action for Scalars

To derive the linear-order equation of motion, we need to expand the action to the quadratic in perturbations. To simplify
the calculations, we choose the comoving gauge. After some integrations by part of the quadratic action, the quadratic
action for scalars in the comoving gauge becomes2

S(2) =
1

2

Z
dt d

3x a
3 �̇

2

H2


⇣̇
2 � 1

a2
(r⇣)2

�
=

1

2

Z
d⌘ d

3x


(v0)2 � (rv)2 +

z
00

z
v
2

�
, (4.32)

where we assume Mpl = 1 and we defined the canonically-normalized (Mukhanov-Sasaki) variable
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The Lagrangian now takes the form of the simple harmonic oscillator, but with time-dependent mass term
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where we took the de-Sitter limit (" = z = 0). The canonical momentum and the Hamiltonian are then
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The equation of motion for the Mukhanov-Sasaki variable is the Klein-Gordon equation:
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The mode functions take the simple solution for the time-dependence under the assumption that !k ' k is time-
independent in the limit ⌘ ! �1:
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where the amplitude of the mode functions are undetermined. Therefore, the general solution can be written as
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4.2.2 Canonical Quantization

So far, we have derived a classical solution of the quadratic action for scalars. By promoting the Mukhanov-Sasaki field v

and its canonical momentum field ⇡ to quantum fields, we need to impose the canonical quantization relation (~ = 1)
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where we work in the Heisenberg picture for the time-dependent operators. Apparent from the notation, we want to define
the creation and annihilation operators as
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2Here, “scalars” are used to refer to the scalar fluctuations, not to be confused with the scalar field.
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such that we derive
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where we defined
v
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By substituting into the canonical quantization relation, we can derive that the ladder operators indeed satisfy the standard
quantization relation at the equal time
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if the normalization for the mode functions is properly chosen
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With the properly normalized operators, we obtain the usual relations
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[(â†k)

n]|0i , (4.45)

where
p
2E is put to make it Lorentz invariant. One can quantize the field, starting with the time-independent Harmonic

oscillators, then applying the Heisenberg picture with the free-field Hamiltonian, as in Peskin & Schröder.

4.2.3 Vacuum Expectation Value

While we imposed the normalization condition for the mode functions in terms of their Wronskian, the physical vacuum
is yet to be fully determined, due to the arbitrariness in the mode functions. Consider a different set of mode functions u±
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Using this relation, we can write the operator v̂ and its canonical momentum ⇡̂ in terms of b̂k and b̂
†
k. These two sets of

quantum operators are then related as by, so called, the Bogolyubov transformation:
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where the normalization for the transformation coefficients is due to the Wronskian normalization. Note that the vacuum
defined by one set of operators âk is not the vacuum with respect to the other set of operators b̂k. To properly determine
the physical vacuum, we need to fix the mode function completely.

In terms of the mode functions, the Hamiltonian in Minkowski spacetime is
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Using the expression for the mode function in Eq. (4.41), we derive the Hamiltonian
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acting on the vacuum |0i as
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The vacuum |0i is an eigenstate of the Hamiltonian, and indeed the first round bracket vanishes. Given the normalization
of the Wronskian, the physical mode function is then
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Therefore, we derive the vacuum expectation values
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4.2.4 Scalar Fluctuations

Now we consider the time-dependent mass term in the equation of motion, and following the same procedure we pick the
vacuum that corresponds to the solution in the Minkowski spacetime as the modes were deep inside the horizon in the far
past

vk(⌘) =
1p

2!k(⌘)
e
�i!k(⌘)⌘ , lim

⌘!�1
vk(⌘) =

1p
2k

e
�ik⌘

, (4.54)

and this choice is called the Bunch-Davis vacuum. To the zero-th order in the slow-roll approximation (" = 0), the
inflationary period is the de-Sitter spacetime, in which
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and we can derive the exact solution for the mode functions:
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When the k-mode is stretched beyond the horizon, the amplitude of the mode function is
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and the power spectra of the mode function and the comoving-gauge curvature are
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4.2.5 Tensor Fluctuations: Gravity Waves

We can repeat the exercise for the scalar fluctuations to derive the tensor fluctuations. The quadratic action for tensor is
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where we again decomposed the tensor in terms of two helicity eigenstates
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From the action, the Mukhanov-Sasaki variable for tensor fluctuations is
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and we can readily derive the tensor power spectrum
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The amplitude of the tensor power spectrum is the energy scale of the inflation in the early Universe, and its ratio to the
scalar power spectrum is
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slow-roll suppressed.
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4.3 Predictions of the Standard Inflationary Models

4.3.1 Consistency Relations

For the standard single field inflationary models with the slow-roll approximation, we summarize the predictions for scalar
fluctuations
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the predictions for tensor fluctuations
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and the consistency relations
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By measuring the power spectrum amplitude and its slope for both scalar and tensor fluctuations, we can ensure that the
fluctuations are indeed generated by a single field inflaton or rule out the standard inflationary models. There exist other
predictions in the standard inflationary models (and of course, for the beyond the standard models) that can be used to test
models, such as the primordial non-Gaussianity and so on.

4.3.2 Lyth Bound

Given the definition of the e-folds, we can further manipulate it by using the inflaton as a time clock:

N(�k) =

Z
�end

�k

d�
H

�̇
=

Z
�end

�k

d�

Mpl

p
2"

, r = 16" =
8

M
2
pl

✓
d�

dN

◆2

, (4.68)

and this relation further implies that the excursion of the inflaton field is related to the tensor-to-scalar ratio as
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where "(�end) ⌘ 1. To solve the horizon problem, the mode k should have expanded at least 40�60 in e-folds. So, this
consistency relation (Lyth, 1997) implies that an inflationary field variation of the order of the Planck mass is needed to
produce r > 0.01. From the theoretical point of view, this sets the upper bound on the amplitude of gravitational waves.
Indeed, the standard inflationary model predictions are very small.

Note that the uncertainty in e-folds N is due to our ignorance in the reheating era: After the inflationary period ends,
the inflaton field decays into other particles and reheats the Universe. This period is expected to be described by a matter-
dominated era, as the inflaton oscillates around the minimum of the potential, effectively acting as a matter. However, we
know very little about this period.

The current observational constraint is
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indicating the energy scale of the inflation is
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4.3.3 A Worked Example

Here we consider a very simple inflationary model with a power-law potential:
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where the mass m and the slope ↵ are the free parameters of the model. It chaotically starts everywhere at any time in
field configurations, and its predictions are then

"V =
↵
2

2

✓
Mpl

�

◆2

, ⌘V = ↵(↵� 1)

✓
Mpl

�

◆2

, (4.73)
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2
end

2M2
pl↵

, r ' 16"V , ns � 1 ' 2⌘V � 6"V . (4.74)

Approximating �end ' 0, we further derive

N ' 1
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�
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◆2

, "V ' ↵

4N
, ⌘V =

↵� 1

2N
, 1� ns '

↵+ 2

2N
, r ' 4↵

N
. (4.75)

4.4 Adiabatic Modes and Isocurvature Modes

• Adiabatic modes.— Assuming a flat Universe, we can arrange Eq. (4.28) to show

�̇ = ⌅� H

⇢+ p

k
2

a2

✓
c
2
s

4⇡G
'� � 2

3
⇧

◆
, ⌅ :=

˙̄⇢ �p� ˙̄p �⇢

3(⇢̄+ p̄)2
⌘ � He

⇢+ p
. (4.76)

Therefore, in the limit k ! 0, if ⌅ = 0 vanishes, the comoving-gauge curvature perturbation is conserved, regardless
of contents in the Universe. Indeed, ⌅ = 0 if the pressure is a function of the density, and it holds true for the matter-
dominated era, the radiation-dominated era, and for the single field inflation.3 This condition is called adiabatic, because
individual components fluctuate at the same rate at a given point:

�⇢i

˙̄⇢i
=

�⇢tot

˙̄⇢tot
=

�pi

˙̄pi
=

�ptot

˙̄ptot
⌘ �'v I ,

�a

1 + wa

=
�b

1 + wb

for 8 a, b . (4.77)

Even for single-field inflationary scenarios, there should have existed many other matter fields, and some energy transfer
to these fields are inevitable. However, these non-adiabatic perturbations decay fast as the inflation proceeds, and they
become exponentially suppressed when these matter fields dominate the energy budget during the reheating era.

In the limit k ! 0, we can indeed derive the adiabatic condition

I :=
1

a

Z
t

ti

dt a(t) , v� ⌘ �1

a
I 'v . (4.78)

• Isocurvature mode.— The evolution of isocurvature perturbations depends not only on inflationary dynamics, but also
on post-inflationary evolution. For example, if all particles thermalize after inflation, all isocurvature perturbations become
adiabatic perturbations eventually. The isocurvature perturbations and the entropy perturbations are interchangeably used,
because they do represent the perturbations between species and it does conserve the curvature. In practice, the entropy
perturbations are parametrized by two free parameters at some pivot scale k0 (0.002/Mpc in WMAP), i.e., ratio ↵ of the
isocurvature to the adiabatic perturbations and their correlation �

PS
P⇣

:=
↵

1� ↵
, � :=

PS⇣p
PSP⇣

, (4.79)

where the relative entropy perturbation (or specific entropy) is defined as

SXY ⌘ �
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◆�✓
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◆
=

�nX

nX

� �nY

nY

=
�X

1 + wX

� �Y

1 + wY

. (4.80)

3It vanished only in the limit k = 0 for single field models.
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By defining the gauge-invariant curvature perturbation in the uniform-density gauge

'� = '�H
�⇢

⇢̇
= '+

�

3(1 + w)
, (4.81)

we can readily show that the entropy perturbation is gauge invariant

SXY = 3
�
'
X

�
� '

Y

�

�
. (4.82)

In literature, it is often the case that the species Y is reserved for photons.

• PNG, multi-field, delta-N formalism, curvaton
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