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1 Spherical Collapse Model in Cosmology

1.1 Spherical Collapse Model

A simple spherical collapse model was developed long time ago to serve as a toy model for dark matter halo formation (see Peebles
(1980) for details). The idea is that a slightly overdense region in a flat universe evolves as if the region were a closed universe,
such that it expands almost together with the background universe but eventually turns around and collapses. The overdense region
described by the closed universe would collapse to a singularity, but in reality it virializes and stops contracting. By using the
analytical solutions for the two universes, we can readily derive many useful relations about the evolution of such overdense regions.

Einstein-de Sitter Universe

A flat homogeneous universe dominated by pressureless matter is called the Einstein-de Sitter Universe:

_ 8nG 1

2 il
H* = 3pm, pmocag.

(1.1)

This simple model is indeed a good approximation to the late Universe, before dark energy starts to dominate the energy budget. The
evolution equations are
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t t
- () _ (77) 7 t_ (”) 7 o = 3t | (1.2)
to o to Mo

2 2 1 2 1
H=_- = . —np—n=— (1-—— ), 13
3t H=0 Pm = GrGe2 PEI T ( \/1—|—z> (13

where the reference point ¢, satisfies a(tg) = 1, but it can be any time ¢y € (0, 00). At a given epoch ¢, one can define a mass scale
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Closed Homogeneous Universe

An analytic solution can be derived for a closed universe with again pressureless matter. The evolution equations for a closed universe
are

a 1—cosf ts . a7 (0 — sin6) P
— = t=—"(0 —sinf) = 2 dn = —=db 1.5
W 2 N 1= VE 43
~ 871G K K (&

3 Mm@ a?(a ) (1.6)

where we used tilde to distinguish quantities in the closed universe from the flat universe and the maximum expansion (or turn-around
ay) is reached at 6 = 7 (H; = 0). The density parameters are related to the curvature K of the universe as

O —1=—-Qp = — K =al. (1.7)

a2H3’ 3 a a4 9
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Spherical Collapse Model

Matching the density equal at some early time, say tg (i.e., g = 0), the time evolution of the overdense region can be derived in a
non-perturbative way as

(1.8)

1+5:@:(3)3:§(0—sin9)z

(1 —cosf)3’

Pm

where we used
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The density contrast vanishes at # — 0, which implies that p,,, = p,, only at & — 0. Therefore, the density contrast J; at its maximum
expansion

972
1+0;=— ~5.6 1.10
+ t ].6 9 ( )
is about a few, while the density contrast d,, at its virialization
146, =1872 ~ 177.7, (1.11)

is a few hundreds, under the assumption that the overdensity region virialized at the half of its maximum expansion. Note that the
universe further expands and the background density is reduced by factor 4, until it collapses at ¢, = 2t; (or 6 = 27).
Finally, expanding the expressions to the linear order

1 [t \*® 3
t 2 2
— ot 0 . S=—0 . 1.12
‘7 36178 (mo) te 20" T (1.12)
and evaluating the linear order expressions at 6; for a; and §;, we first compute
5 3 o\ Y3
- = =36'/3 L - 1.13
(e77 20 7Tto + ( )

and the density contrast linearly extrapolated to late time and its value at virialization are then derived as

D
5= D8 3(52)

1/3
5 8= ) (0 —sin0)%/3 Dxa. (1.14)
i a;

This equation implies that at the time of collapse the density contrast d, is

0y >~ 1.686 . (1.15)
For |0] < 1, we derive the relation
5:5L+g5§+%i %5ﬁ+m, 5L:5*¥52+§§£53*§?2§3 4 (1.16)
Biased Tracer
For any biased tracer dx, the Eulerian and the Lagrangian bias parameters can be written in a series
Sx = i bi?a” , 6k = i b—’?az , (1.17)
= n! = nl

where the superscript L represents quantities in the Lagrangian space. Mind that the density contrast § for the Eulerian is nonlinear
and ¢, for the Lagrangian is linear. If the number density of the objects X is conserved

Pm de = Pm d3q 5 PX de = ch dgq ) S l4+0x = (1 + 5m)(1 + 55{) 5 (1.18)
the bias parameters are related as

8
21

1 4 22
oY, bgzbgf—gbg —7961)1;, b4:b£;——0bL+7 Opt +

476320 |,
772 1323 7 % " 132372 b (1.19)

by =b +1 by = b .
=0t 2 =02 F 305613 *

This simple relation owes to the fact that the spherical collapse model is local in both Eulerian and Lagrangian spaces.

1.2 Dark Matter Halo Mass Function
1.2.1 Basic Idea

Given the simple spherical collapse model, we would like to associate the collapsed region with some virialized objects like dark
matter halos.
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1.2.2 Halo Mass Function

Given the simple spherical collapse model, we would like to associate the collapsed region with some virialized objects like massive
galaxy clusters or dark matter halos. Of our main interest is then the number density of such objects in a mass range M ~ M + dM,
and this is called the mass function. However, note that the spherical collapse model does not specify the mass of the collapsed object
or the time of collapse.

A simple model called, the excursion set approach, was developed: One starts with a smoothing scale R and associates it with
mass M. The density fluctuation d after smoothing with R is very small (6 = 0, if R = 00), and this region has never reached the
critical density threshold d.. in its entire history. This implies that there is no virialized object associated with such mass. One then
decreases the smoothing scale (or mass), and looks for the collapsed probability: Some overdense regions have at some point in the
past reached the critical density, while some underdense regions have not. Therefore, the total fraction F. of collapse can be obtained
by using the survival probability P, and it is related to the mass function as

dec 0o _ _
e dn M dn Pm OF, Pm dlnv
> = — = _ C— = — | = = — P A
F.(>M)=1 / dd Py /M dM il oy S Y ( 3 ) (v) p) , (1.20)

— 00

where it is assumed that the mass function only depends on mass and we defined the multiplicity function f through the relation

_5e(2) < dv
ik /0 — =1 (1.21)

The task of obtaining the mass function boils down to computing the survival probability and expressing it in terms of the
multiplicity function. The way to find the survival probability at a given mass scale M is to derive the evolution of the density
fluctuation as we decrease the smoothing scale R. The reason is that the region may have already collapsed at a larger mass scale
or smoothing scale, and this contribution should be removed in computing the survival probability at a lower mass scale. In a given
time, the survival probability at n-th step depends on the entire history of the trajectory (non-Markovian process) as

de e
Ps((snyan)dén:dén/ dénfl/ d61 Ps(élu"'ényo-la"' >Jn)7 Mn(an) <"'<M1(01)7 (122)

— o0
it is notoriously difficult to solve, even numerically. However, once we assume that the fluctuations are independent at each smoothing

and are Gaussian distributed (true only in Fourier space at linear order), the trajectory only depends on the previous step (Markovian
process) and the survival probability becomes

6(5

Ps((snyan) = / dénflpt((snyo'nwnflao'nfl) Ps((snfho—nfl) 5 (123)
— 00

where the transition probability P; is nothing but a conditional probability for a Gaussian. With the boundary condition P; = 0 at

0 = d., the solution is (derived by Chandrasekhar for other purposes)

1 52 1 (25, — )2
o _ - e 79 <4, . :
P, o exp ( 202) 5 exp [ 957 } for § <9, (1.24)

Note that P, becomes Gaussian with §. — oo. The survival probability for its simplest case is described by a Gaussian distribution,
but the second term reflects that there exist equally likely trajectories around the threshold that have reached the threshold in the past.

The collapsed fraction is
1 v 1 1% Ve
F,=1——erf| =) —zerf | = | =erfc| —= | , 1.25
=1yt (7g) - 2 () = o () 2

flv) = \/zu e (1.26)

where the second erfc was missed in PS, resulting in a factor 2 difference in the multiplicity function. This part was resolved by
BCEK in terms of cloud-in-cloud.

Of course, this model relies on many approximations, and it is not accurate. However, it provides physical intuitions, connecting
the complicated formation of galaxy clusters and the dynamical evolution of the matter density fluctuations. In general, numerical
N-body simulations are run, and dark matter halos are identified by using some algorithm such as the friends-of-friends method or
its variants to derive the mass function from the simulations.

and the multiplicity function is
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1.2.3 Halo Mass Functions in Literature

In general, numerical N-body simulations are run, and dark matter halos are identified by using some algorithm such as the friends-
of-friends method or its variants. These halo mass functions differ from the simple analytic formula we derived for the Gaussian
random field. However, the functional form is relatively resilient, such that an introduction of a few nuisance parameters to the mass
function can provide a good fit to the simulation results. A lot of variants exist in literature, but the standard and simplest cases are
one by Sheth and Tormen (1999)

2 2\"7 6. 52
for=A 21+ (2 % exp(=2%) .  A=03222, a=0707, p=03, (1.27)
™ ad? o 202

and one by Jenkins et al. (2001)

Firgo = 0315 exp (= [mo~! +0.61[**) . (1.28)

They all have a limited range of validity.

1.2.4 Astrophysical Applications

halo merger trees, semi-analytic models for galaxy formation, void distributions, and so on.

1.3 From Probability Functional to Correlation Function

Assuming that the density probability functional is known, we derive the one-point statistics and its spatial correlation function. Those
for the cumulative distributions are also derived. In this case, we focus on one population of halos or samples, rather than multiple
populations considered in the mass function approach.

1.3.1 Density Probability Functional

With a probability functional of some field, one can trivially obtain a PDF at a given position, which is then related to a generating
function by a Fourier transformation. The generating function indeed generates N-point correlation functions. They contain the same
information, but in different format.

One-Point Statistics

Given a probability functional P[4(x)] defined in all space x, a one-point pdf (i.e., the probability to have d; at a given point x1) is

d . d .
P(5)) = / d6(x) Po(x)] 0P [0(x1) — 1] = / d6(x) Po(x)] / 1 i@ e)=5) = / N —insizgy . (1.29)
27 2
where the pdf is the Fourier counterpart of the generating function
Z(1) = [ ds(x) Plao)] e1000) = (et S " ) = (1.30)
1) -— - - — n! 1 - ) .

and the cumulant generating function is

W) =InZ = Zl‘h 5M(x1)), - (1.31)

n=0
Note the difference in the ensemble average in Z and w, and we used the cumulant expansion theorem

() = S —em )] —en |25 e 0

n=0 n=1

4 6
iy _ o2t LN LN Ly ey 1 sey 1.33
() ¢ 27 Tal1) 3l (0 O = (04 (1.33)

where we used the standard formula for the Gaussian distribution
1 d.]l o 172 2 1 52 2

:77J2 2 P~ :/7 iJ161—5J70° _ 67/20 ) 1.34
wa 3770 G (01) o € o e (1.34)
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To incorporate a smoothed density field dg(x1 ), we just need to replace
iJ1(S(X1) — Z'J16R(X1) = iJl /d3y1 5(Y1)WR(X1 — y1) . (135)

N -Point Statistics

Similarly, the one-point calculations can be extended to a two-point pdf of §; at x; and J, at x»

dj, dJy _;
P(61,02) :/dd(x) P[5(x)] 6P[6(x1) — 61] 6P [0(x2) — 6] :/271 e Ml/Q—; e 2 7 (), Jo) (1.36)
where the two-point generating function is
Z = (e hdt+inita)) (1.37)
By the same token, we generalize to co-point pdf and derive
~ [dJ; . o A
_ H/% elJiéiZ’ 7 — /dé(x) P[(S(X)] ezi iJi0(x:) <efd3x zJ(x)cS(x)> =¥, (1.38)
s
i=1
W= <ef dez'J<x)6<x)> 7 (1.39)

and from the generating function we “generate” cumulants

1 "InZ
§ c b (%)) = (n) LX) = — . 1.40
< (xl) (X )>c gc (le y X ) in 6J(X1) . 5J(Xn) I—o ( )
Further Generalization
In fact, this can be further generalized by considering not only the density field §(x), but also other fields A, (x) with p =1,--- | N

such as the velocity field 7;(x) = 0;6(x), the tidal gravitational field (;;(x) = 0;;(x), and so on. For example, the peak model PDF
requires N = 10 (1 for 9, 3 for n;, 6 for (;;) all at the same spatial point (such that N x M-number of fields for M different spatial
points). Another example is N = oo for the density field. In general, the generating function can be re-constructed for /N-number of
A,, by using the cumulants as (here, IV is the total number including different quantities and spatial points)

M = (A A = = 1.41
K1, s hn < 1251 ,un>c Zn 5Ju,1 . 5JM” J—o ) ( )
9] in N N -
nZz[J] = Z nl Z Z M;(t?) s T s Z=e"™M Jexp lz M;([f’) in ) "‘Jun] )
n=1"" p;=1 pn=1 n=3 M1y s fhn

where we isolated the Gaussian part in the generating function. Finally, using the trick J,, — ¢9/0A,, we can express the one-point
pdf with V-A,, in terms of Gaussian PDF as

N

o0 oo n 'n N [e'e)
P(A) = H dJ; e WA Z(J) =ex E (=1 g M H dJ eI MTI—iJ-A
- U e P E e e g a, P
ZOO (=" ZN (n) o
= M., —————— | Pg(A). 1.42
CeXp [n_g 7?,' W M1 5 Hhn aA’ul . 814#" G( ) ( )

Another useful generalization for a one-point PDF is that two probability distribution functions and their generating functions are
related to each other as

kS — Kb d\"
Pa(§):exp lzm <_d5)

n=1

> K& — Kb
Pi(6) Zu(7) = exp [Z Tt iy

n=1

Zp(J) , (1.43)

where the cumulant is £, = (d")..
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Two-Point Correlation

Now we consider a probability at a given position or two positions, in which the density fluctuation is above some threshold. The
cumulative N-point probability distributions are from Eq. (1.42)

PGy = o [Cayen| Yy S A e 144
' o ), P NN dy™ ’ :
(N,m) N
Wg (’I”) a 1,2 2
Py(>v,r) = —/ dyl/ dys exp W e~ zwity)
S
where the N-point matter correlation functions are
2,m 2 ,m
w?™ =) fod,  (m=1)
W) = { w o (m=00r2) . M) = (F(@r) - dul@1) du(@a) -+ dulaa) )
ngm) = §£N7m) (T)/Ué\; (N > 2) m times N —m times
(1.45)
Again, keeping only the linear order term in Eq. (1.44), i.e., exp[---] = 1+ - - -, we have
1 w{™? 2
Pi(>v) = 2erfc( > Z TS — Hyx_1(v)e™” /2 (1.46)
N 1 1% 2 1 v s ng’O) 22
Py(>vr) =~ ierfc 7 + %erfc 7 sz:g THN,l(V)e
1 oo N-1 w(N,m) ,
o X Hm— H —m— v )
+27er::2m:1 (N — )y -1 -1 (V)e

where H,,(z) is the Hermite polynomials. Note that for P, there exists a non-vanishing term with N = 2, otherwise it would simply
describe two independent PDF.

1.3.2 Mildly Non-Gaussian Halo Mass Function

Given the non-Gaussian PDF, the non-Gaussian mass function can be derived as

dn pm AP (> vR)

- = —2fns S (1.47)
pm dv 1 Spo™ [ dN\"| 2 o Pm o0 d Sna™ [ d\"| iz
M dM ar Z:: nlo? ( av) |° ), * ,ﬁdM Z:; no? \“dz) |° ’

where the reduced cumulant is S,, = K,/ H;‘_l, ie., kp = (S,0™/0?)o™. Note the reduced cumulant follows the convention in
literature, but it is dimensionful. One needs to solve the above equation for the non-Gaussian mass function. Various non-Gaussian
mass functions differ in truncation of the expansion above (see below). For example, Matarrese et al. (2000) truncated at some
cumulant order. LoVerde et al. (2008) truncated by using the Edgeworth expansion. LoVerde and Smith (2011) truncated by using
the log of Edgeworth.

Only keeping the linear order term exp[z] = 1 + = + --- and using Eq. (1.42), the one-point non-Gaussian PDF is by (often
known as Gram-Chalier A Series)

_ > Kn _i " 1 —5%/20% _ 1 62 /202 530 5402
P,(8) = exp LE_:B o ( d5> ] —c = 5 1+ o0 . (1.48)

However, since it only accounts for the linear order term in the exponential, this series is not positive-definite (hence P, is not a
proper PDF) and often diverges.
Following Lucchin & Matarrese (1988) and manipulating the variables,
5 .
vi=2 J.="" (1.49)

g g
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we derive
1 1 1 1 =
—iJ5+w(J) = <2J202 iJcS) + (er 2J202) = 7522 v+ + § : i (v 4 iz)" (1.50)
and by using the contour integration, we finally derive the one-point PDF, known as the Edgeworth expansion,
_ 1,2 > dz
P) = ez /_Oo 5 EXP l E ‘(v +iz)" (1.51)
1.,2
e 2% Sso o [ Sa S2 3 Ss S35, S3
= 1+—H —H =H —H ——H H
om0 { * o B+ <24 1)+ 7 How) | + 07| g Hs() + T How) & gogaHo(v) ) £+ |

where the probabilists’ Hermite polynomial is
1 e 1.2
Hy(x :—/ dze 2% (z+iz)", 1.52
but one can also derive from Eq. (1.42) by going to higher order terms in the exponential exp[z] = 1 +z + 2%/2 + - - -

1.3.3 Peak-Background Split and Statistics of Thresholded Region

Here we exclusively focus on the statistics of the density distribution above a given threshold.

One-Point Statistics

When the underlying smoothed density field (R;) obeys the Gaussian statistics, the probability P; of exceeding the threshold v and
the effect of adding a long-wavelength (background) perturbation §; of characteristic wavelength R; > R to the small scale density
field (peak) d, are

Pi(>v) \/7/ dze /2 = 3 erfc (\%) , P (>v,8) =P (> v— i) . (1.53)
We define the peak-background split cumulative bias factors ¢y as the fractional change of P; with §; via
N Z1 e
g (1) e ()] e s
and in the high peak limit v — oo
Hy — vV | ey vHy 1 (v) )oY =~ vV ol . (1.55)

Here, Hy is the statistician’s Hermite polynomial defined by

N z2/2 ar —x2/2 phys N/2
Hy(z) == (1) . (e=72) . HYY (@) 1= 2V 2Hy (Vo) | (1.56)
Hy=1, H =z, Hy=2>-1, Hs =2® — 3z, Hy=z*—622+3. (1.57)

For differential mass function, or halos in a mass bin (vs. cumulative), we derive

i . oPm d B pue"/zdlnas 1 , ,
ap(M) := QMdel (>v)= 2]\42 Jor |amar| P (> y)f—me dMMn;,(M) (1.58)

where the factor of 2 is introduced to account for the fact that regions with § < §. may be embedded in regions with 6 > d. on scale
> R (clouds-in-clouds). Using the definition of the cumulative bias, we have

-1
[e%s} dN dN
CN = [/M dM’ M’nh(M’)] /M dM’' M’ |: 5N nh(]\/[’)] , [W 7—1’1(]\4/)} —. bN(M/)ﬁh,(M/) ’ (1.59)
where the PBS bias is N
1 1\" a¥ > 1 Hy(v)
=—5 | —— —v¥/2\ _ ZZINHIVT)
b (M) ve—Vv3/2 < gs> AN (ue ) v oN (1.60)

It is only in the high-peak limit (v >> 1) that the mass-weighted cumulative bias ¢y and the bias by (M) asymptotic to the same
values.
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Two-Point Statistics

For a Gaussian, we have (see Eq. 1.44)

_2 2
=B =2 ()] [ o[ 1,

and the double integration is

2
* [ e LMY 9\ e e L [EOTY [, (2N
[ [on 2w [58) Goaw) 20 -Eml5F] [[w(@) =) o

where the NV = 0 term is simply the erfc function for the Gaussian piece and the integration is

(2N ON'T N~y /2
dy ay e =3, e =(-1)"e Hy-_1(y) . (1.63)

Therefore, the correlation function is

2 v 2 X 65(7') N 2 _,2 > (32 N 1
=2 )] K e - £ -0 o
N=1 s N=1"""
Since the local bias expansion can be written as
o~ @ 1
(@)= FN, [0s()] ™ = &6, + 5 B0t (1.65)
N=1"""

we see that the coefficient ¢y is different from the ¢,y appearing in the correlation function: the coefficient ¢3; includes not only &%,
but also terms such as ¢y ¢ N+2ma§m for all positive integers m > N/2. This clearly shows that the bias parameters ¢y from the
peak-background split are to be seen as “renormalized” bias parameters, which take all the higher order moments into account.

Non-Gaussian Two-Point Statistics

Similarly, the correlation function in the non-Gaussian case is obtained by using Eq. (1.46) and keeping the linear order only

2 v —2 oo N-1 (Nm) co N-1 CmCN —m (Nom)
Esu(r) = p {effc (\/§>} Z Z Hp 1 (V)HN—m—1( Z Z (N — )] 5 (r). (1.66)

N2m1 N=2m=1

Now we compute the power spectrum. For simplicity and without loss of generality, we will assume that a single non-Gaussian
N-point function (N > 3) dominates. We then have

CmCN—m m CmCN—m m
Eu(r) = d&(r Zm,N i S, Py (k) = ci P, +Zm,N s k) 6Ty

where form = 1 (and m = N — 1) we have

N—2

- d3k;
(N (k) = k M (ks Mk, ky,...,k ¢ 1.
&) = M TT [ [GsMet) Mo 6 0 ki len i), (168)
3 N-2 B
EVAk) = I (/(27T>Z3Ms(ki)> M, (k =k |) Mo(q) €5V (k — Ky, k.. ky_a, q X) (1.69)
i=1
where q = —k; —--- — ky_2 — k, and X is a set of variables characterizing the primordial /N-point function such as fxr,, gn

depending on the details of the model of non-Gaussianity. On large scales, §§N””) terms (m = 2--- N — 2) all add white-noise
contributions to the power spectrum of thresholded regions, and only the terms with m = 1, N — 1 contribute to the scale-dependent
bias. Therefore, the power spectrum is

o~ 2 C1CN—-1 £(N,1) _ |2 4 2 aq—1 (N)
Py, (k) ~ ¢ Ps(k) + 27(]\[ — 1)!55 (k) = {01 + 2(N — 1)!clcN_1asMS (k)F™M (k, X)| Ps(k) , (1.70)
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where the shape factor is

L d3k

Noting that P-.,, = (c? + 2c1Acy) Ps to leading order in the non-Gaussian corrections, we can identify the scale-dependent correction
to the linear bias, and for the fyr,-case we have

4CN 1 2]:9 (k?)
(N —-1)! 7s M (k)

Acyi(k) = P, (k)= [C% + 4fNLclcgag/\/ls_1(k:)] Py(k) vzl b2 [1 +4fnL Ps(k) .

(1.72)

ML(8)

Note that in general the scale-dependent correction is ¢y _1, not the usual (b; — 1).

1.4 Beyond the Spherical Model: Peak Models

1.4.1 Basic Idea of Peak Models

Going beyond the spherical collapse model, we consider the density peak positions for the sites for halo formation. Compared to the
simplest version of the spherical collapse models, not only the density threshold, but also its derivative is considered to describe the
halo formation process. In the framework of this peak model, we derive the statistics of such peaks including the number density, the
shape parameters (deviation from sphericity), and the correlation. For the Gaussian probability distribution, analytic calculations are
possible, and much of the work was done in Bardeen, Bond, Kaiser, and Szalay (1986).

1.4.2 Multivariate Gaussian Joint Probability Distribution

The notational convention is

F(x,t) = dn(x,1), ni(r) = V,;F(r), Gij(r) = V;V;F(r), Npi(v) = (Npi(r,v)) . (1.73)
The joint Gaussian probability distribution of F', 1;, (;; at a given one-point r is described by its correlations
5 ot ot o3
(FF) =05, (mng) =3 0, (FGj)=—=5 0, (GijGm) = 75 Qa0 +0idj+dudse) , (Fni) = (ni¢ir) =0, (1.74)

where 07 = [dInk A} k* and [03] = L* dimensionful. Note that if one consider a PDF for density F' only, one just needs o3 (it
is one-point, not spatial two-point correlation). Because of the symmetry of (;;, only six components are independent: A = 1 — 6,
referring to the 5 = 11,22, 33,23, 13, 12 components. The covariance matrix M has dimension 10.

o2 0O 0 0 —0?/3 —0?/3 i 2/3 0 0 0
0 ¢2/3 0 0 0 0 0 0 0
0 0 o2/3 0 0 0 0 0 0 0
0 0 0 o3 0 0 0 0 0 0
M — —02/3 0 0 0 o3/5 03/15 03/15 0 0 0 (1.75)
—02/3 0 0 0 o215 o2/5 o2/15 0 0 0 :
—02/3 0 0 0 o2/15 o%/15 o%/5 0 0 0
0 o 0 0 0 0 0  o2/15 0 0
0 0o 0 0 0 0 0 0 o2/15 0
0 0o 0 0 0 0 0 0 0 o2/15
To diagonalize the remaining four dimensions, we introduce a new set of variables {4, 4 =1,2,3} — {z,y, 2}, where
oax=—-V?F=—((1+G+(), o2y =—(C1—(3)/2, o2z =—(C1—2C+)/2, (1.76)
Clz—%(m—ki’)y—kz), 42:—%(95—22) ng—%(:ﬂ—i’)y—kz). (1.77)
Further manipulation gives
1L —y/3 —/3 —/3 1 v 0 0
F G G G —v/3 1/5 1/15 1/15 v~ 1 0 0
<JO ooalos) Tl Sass 115 15 asis |0 @B g 0 115 o ’ (1.78)
—y/3 1/15 1/15  1/5 00 0 1/15
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where « is dimensionless and

1 1 (k%) o}
2y — 1 2y — 1 - L p— 2N =2 = =1, 1.79
=1, @)=1, (w)=v, {)=3, )=z, 7 G172~ 2y (1.79)
Note (k?) = 0} /03 = —3¢"(0)/£(0). So, if Py, (k) ~ 67 (k — ko), then v = 1, and if A} ~constant, then v < 1.
For multivariate Gaussians (y1, - - - , yn), the joint Gaussian probability is
e~ @

P(yr, - yn) dyr -+ - dyn = dyy -+ -dyy , (1.80)

[(2)™ det M]'/?
where Q = 1 (y — (yN" M~ (y — (y)) and the covariance matrix M = <(y —(y) (y — (y))T>. Therefore, for the Gaussian

variables v, 1, 4 (A = 1 — 6), the joint probability is

e~ @

P(F,n;,¢a) dF d*n d°¢ = dF d*n d°¢, (1.81)
' [(27)10 det MY/
where M is the covariance matrix and
2 6 2
— . 1
2Q:I/2+M+15y2+522+3772n+z v Zy =W, (1.82)
(1=1?) o1 a—s 92

Now we choose the principal axes of (;; and let the eigenvalues A;, where ¢ = 1,2, 3:

A0 0
¢=-— 0 X O ; (1.83)
0 0 X3

where (4 = —\4 for A = 1,2,3 (note x,y, 2z # 0) and (4 = 0 for A = 4,5, 6 (no off-diagonal terms). The volume element in the
six-dimensional space of symmetric real matrices is

6

ds
dCa = ] d¢a =10 —X2)(A2 = As)(\ = As)[dA1 dAs d)s 5
A=1
f 2 s 2
= 205 |y (y? — 2| 3 o5 dx dy dz 653 =3 oS |y (y* — 22)| dx dy dz dQgs | (1.84)
2 .

d\idhadhs = o3|Jg" | drdy dz = 3 o5 dx dy dz (1.85)

1
y (y? —2?) = ~552 (M = A2)(A2 — A3)(A1 — Az) . (1.86)

2
Therefore, the joint probability is
P(F,n;,Ca) dF d®n d°¢ = e (oodv) dn (2 oS |y (y* — 22)| dz dy dz dst> (1.87)
T [(27)10 det M]"/? 9 ’

and since ( is independent of the Euler angles, integrating over the angles gives 272 /3! and the joint probability is

: e @ 2 22
P(v,n,z,y,2) dvd®ndedydz = [(27)10 det M]1/2 U oS ly (v° — 2% BN dv d*n dx dy dz
s .
(15)5/2 03 B dgn
= 3 ol _072)1/2 12y (y? — 22)| e Ydv dx dy dz —5 (1.88)
1 0
where the prefactor is [V and the determinant is
2\ 3 2\ 3
_ (%1 o3\ 1=7 5 4
det M = <3) (15> 33152 0509 - (1.89)

10
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1.4.3 Gaussian Peaks Models

Given A; > A2 > A3 and peaks are at extremum 7)(r,,) = 0, the density fluctuation and its derivative near peaks are
F(r) = Flry) + 5 3 Gilry) (e~ x)ie —x,); mi() = 3 Gy x — 1), (1.90)
ij J
Therefore, the full density field for the maxima of height between 1y and vy + dv (differential number density of peaks) is
Np(r,vo) dv = Z §P(r —rp,) = SP[(CHm] 0(A\1) O(\2) O(N3) 6P (v — vp) dv (1.91)

= |det ¢] 87(m) (A1) 6(Aa) 6(A)8” (v — vo) dv .

Similarly, the phase-space distribution function is f,i(r,vo) = 02(v — vo) ny(r). Unfortunately, the probability function of
npk = Npi(> v) is analytically intractable. However, the average Ny, = (N, (r)) can be obtained by integrating Eq. (1.88) as

Npp(v,z,y,2) dvde dydz = (Npg) dvdedydz = /d?’n Ny P(v,m,x,y, 2) dv dz dy dz
55/231/2 o9 3 1 -
_ Y2 [Z2 e &)
= @y <U1> (1_72)1/26 F(z,y,2z) x dvdx dy dz , (1.92)
where
27 A1 A2A3(A1 — A2) (Ao — A3) (A1 — A
Flayz) = 577 slh 2)((,62 D X) _ony [ 2) - (3902w — 2 (1.93)
2
A v (@—wm)? 5 2 2
- Z (3 1.94
Q 2+2(1_72)+2(y+2)7 (1.94)
and x = 1 if the constraints in the x, y, z domain are satisfied (Y = 0 otherwise). Further integration of Eq. (1.92) yields
12 [~z = 2)%/2(1 = 97
e exp |—(r — . 0%
Npi(v,z) dv de = )R f(z) 2r(l = 721/ dvdx , (1.95)
with
82552 1 s [ e, [ —ase [ (/22
flz) = dy e 4 dz F(z,y,z) e =+ dye Y dz F(z,y,z2) e z (1.96)
V2T 0 —y z/4 3y—x

+ erf

(2% — 3x) {erf [(g)l/Qx

1/2 1/2
5 / z 94 2 / 31$2+§ e—57%/8 | ﬁ_§ o—52%/2|
2 2 o 4 5 2 5
The asymptotic limits of this function is

3555/2 . 542
T) = —————=2x" |1 — —

10 7w (1%
Final integration to get the average number density N, (1) dv needs to be done numerically over x as

1 29 [ exp [—(z — z4)?/2(1 — ~2
Nul) = g e e sty TN, (1.98)

) for x —» 0, flz) — 2 — 3z for x — 00 (1.97)

where R, = /3 (01/02) and . = yv. The integral is denoted as G (7, x.) and its fitting formula is given. The cumulative number
density of peaks higher than height v is

> 29 — 616 _
npk(u) = / dl// Npk(yl) 5 npk;<_00) = m = 0016R* 3 5 (199)

and the high peak limit v — oo is

2 3/2 ) 2 3/2 5
[<k(§7{)32] (P =3y e ?dv, n(v)— Kk(;{)?;] (V2 —1)e v /2, <k2> =

For a Gaussian filtering, the power spectrum is P(k, Ry) ~ k" e~ (kRy )2, and other quantities are

(Ry) n+3 o03(R;) (n+5m+3) 5, n+3 *< 6

Ny dv — =3(y/R.)?. (1.100)

qu‘ﬁw

g

2
1 — =
2Ry 2R o3(Ry)  4RF 0 T a5 n+5

1/2
) Ry, Nppdv o< 1/R} oc1/R} . (1.101)
g

11
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1.4.4 Conditional Probability for Ellipticity and Prolateness

The conditional probability for z = —V?2F /o5 is independent of e and p and is

_ Npa)dr _ espl—(@—2.%/20 =) f(z) do
PO =Nl RO 7 GOe) (1102

For high peaks (large z.), it is more likely that the peaks are located at large x. The conditional probability for y, z given v, z is
simply

Nor(v,2,y,2) dvde dy dz  3%25°/% F(x,y,2) x [ 5, 5 2}
Py, zlv,z) dy dz = 222228 = o exp |—= (By* + 2%)| , 1.103
(y, 2lv, x) dy Nop(v,2) dv d NI p|—5 By ) (1.103)
and independent of v. We characterize the asymmetry as ellipticity and prolateness
)\1—>\3 y )\1—2)\2+)\3 z
= =2 == L e _ T, 1.104
€ 2 ZZ /\z xT ’ p 2 El )\z T ( )

Thus, e (0 < e < 1/2) is a measure of the ellipticity of the distribution in the 1-3 plane, and p determines the degrees of oblateness
(0 < p < e) or prolateness (0 > p > —e) of the triaxial ellipsoid. Oblate spheroids (football) have p = e, and prolate spheroids
(disk) have p = —e. The characteristic function y = 1if0 < e<1/4and —e<p<eorl/4<e<1/2and —(1—-3¢)<p<e
(zero, otherwise). (e, p) is confined within (0, 0), (1/4,—1/4), (1/2,1/2).

Therefore, the conditional probability for ellipticity and prolateness is

3255/ 28 2(302 4 2
P.,(e,p|v,z) de dp = P.,(e,p|z) de dp = W m e~ (5/2)a” (37 +p%) W (e, p) de dp , (1.105)
where
Wie,p) = LY ZEDZ=POIX 2 02yq _ap)(14+p)2— 9 x . (1.106)

28
Notice that the most likely value of p quickly goes to zero. High v peaks are neither oblate nor prolate, but they are definitely triaxially
asymmetric, since Ay >~ (A1 + A3)/2. Indeed, in the large x limit, e, p are small, and we can approximate the PDF by a Gaussian:

(6 - em)2 (p - pm)2

Pep(eap) ~ Pep(emapm) eXp - 20_3 - 20_12) 5 (1107)
where ) 6
em em
em = , Pm = , o= —F1, Op=——. 1.108
VBall+6/Ga?) 2 P St 6/ (e VRN (109

For high peaks, z is large and thus e,,, >~ p,, ~ 0 (more spherically symmetric).
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