2 Newtonian Perturbation Theory and Galaxy Bias

In this chapter we study the Eulerian and the Lagrangian perturbation theories in Newtonian dynamics and their connection to
modeling the galaxy (or halo) distribution.

2.1 Standard Perturbation Theory

In Newtonian dynamics, fully nonlinear equation presureless fluid can be written down:

-1 1 : 3H? 1
0+-V.-v=—=V-(vd), V'V-FHV'V-FT(IQM(S:—*V'[(V'V)V] ) V3¢ =4nGp. (2.1)
a a a
The Euler equation can be split into one for divergence and one for vorticity. The vorticity vector V x v decays at the linear order.
At nonlinear level, if no anisotropic pressure and no initial vorticity, the vorticity vanishes at all orders. However, in reality, the
anisotropic pressure arises from shell crossing, generating vorticity on small scales, even in the absence of the initial vorticity. This
modifies the SPT equation, such that there exist additional source terms for two kernels.

2.1.1 Basic Formalism
We consider multi-component fluids in the presence of isotropic pressure. In case of n-fluids with the mass densities g;, the pressures
pi, the velocities v; (¢ = 1,2, ...n), and the gravitational potential ®, we have
, : 1 2 -
0i +V-(0vi) =0, Vi+vVv,-Vv;=——Vp, -V, \% <I>:47TGZQJ-. (2.2)
Oi .
j=1

Assuming the presence of spatially homogeneous and isotropic but temporally dynamic background, we introduce fully nonlinear
perturbations as

0i = 0i + 004, pi = Pi + 0p;, v, = Hr +u,, D=0+ 5, (2.3)

where H = a/a, and a(t) is a cosmic scale factor. We move to the comoving coordinate x where

1 0 0 0 0 0
r:a(t)x, V—Vr—gvx, m—ﬁtr—atx‘i‘(atrX)'vx—atx—HX'Vx. (24)
In the following we neglect the subindex x. To the background order we have
a 4G 8rG 2F
5. Ho: = Z__ 77 . H?2 == L4 2= 2.
0i +3Hp; =0, a 3 2.9 3 2 e+ (2.5)

J

where E is an integration constant which can be interpreted as the specific total energy in Newton’s gravity; in Einstein’s gravity we

have 2F = — K c? where K can be normalized to be the sign of spatial curvature. To the perturbed order we have
-1 1 . 1 1 Vép;, 1 1 _o _

J

By introducing the expansion 6; and the rotation W, of each component as

1 1
0, = —=-V-u,, W=V xu, 2.7
a a
we derive
. B 1 1 Vop;
0, + 2HO,; — 47TGZ 00 = V- (w; - Vu,) + aQ@_v- (1 " 51_) , (2.8)

J
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Wi+ 2HE,; = —aizv x (0; - Vuy) + (2.9)
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By introducing decomposition of perturbed velocity into the potential- and transverse parts as
_ (v) (v) _ a 1 (v)
w =-VU +u;"”, Vo =0; b: = —U, Wi=-Vxu”, (2.10)

instead of Eq. (2.9) we have

1 1 ; 1 ;
a® ¢ g =~ gy v+ LY gaAry . (v 4 Y0P | 2.11)
a 0 1+ 51 0; 1+ 61
Combining equations above, we can derive
; . B 1 1 1 Vép;

J

These equations are valid to fully nonlinear order. Notice that for vanishing pressure these equations have only quadratic order
nonlinearity in perturbations.

2.1.2 Recurrence Relation and Third Order Solution

For a single presureless medium, the governing equation simplifies as

LY v . 2.13)

a2

. 1 )
§—0=—-V-(6u) , 0+2HO0 — 47Gp,d =
a
From the linear order calculations, we derived

k
0=Hf6, u, = iaﬁek . (2.14)

By assuming the separability of the time and the spatial dependences, the standard perturbation theory (SPT) takes a perturbative
approach to the nonlinear solution:

On(tk) = D D"(t) [H / (‘;Tq)g 5@)1 (2m)%6” (k = iz S (a1, @) = D D06 (k) (2.15)
n=1 i n=1
91;5’;;1‘0 = z:jl D (t) [H / g& S(q»] (2m)%67 (k = q12..n) G (a1, -+ an) = Z:jl D™ (k) (2.16)

where q12.., = Q1+ -+ qn, 6 (k) and 6(m) (k) are time-independent n-th order perturbations, Fés) and Ggf) are the SPT kernels
symmetrized over its arguments. The (dimensionless) Newtonian linear-order growth factor D(t) is normalized to unity at some early
epoch t; when the nonlinearities are ignored, and the initial linear density perturbation is set up in terms of which the perturbative
expansion is given:

Sn(to, k) = 0 (to, k) = 6(k) , D(t) = , D+2HD — 4xGp,,D =0 . (2.17)

Di(to

~—

With these decompositions in the Fourier space, the LHS of the Newtonian dynamical equations become
. > . D"
bn— Oy =HAS D (n5<"> _ 9<">) L O+ 2HOy —4nGpndn = HAFEY — [(1 Fon)p™ — 35| | (2.18)
n=1

where we adopted the usual assumption €2,,, = f1 = 1 in SPT and utilized the relation between the growth factor and the growth rate
D = HDf,. The RHS of the Newtonian dynamical equations are the convolution in the Fourier space:

[—iv.(anN)} k) = / % / ?;7?)3(2@36’3&—ng)amﬁN(Ql,t)(SN(QQ,t) = HAY DAL (K) (2.19)

3 3 0
{;VKVNV)vN}}(k) = / ég; / éf)i,(%)%f’(kQu)ﬁmeN(Ql,t)eN(Qz,t) = H?f} Y D" B, (k)2.20)

n=1

n=1
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where the vertex functions are defined as

_ _ Q1 Q2 _ _ Q1+ Q2Q:1 - Q:
Q12 = a(Ql, QQ) =1+ Q% ) 512 = 5(Q13 QQ) - 2Q§Q% ) (221)
and the n-th order perturbation kernels A,, (k) and B,, (k) are
n d3(]‘ n—1
e v 'y . 3 D —_ . DR . . . PR
An(k) - [H/ (277)3 5(%)] (27T) 6 (k q12--~n) i:ZlOQQGZ(qh 7%)an2(%+17 aqn) ) (222)
d q A n—1
B (k) H/ : ] (2m)%67 (k — d12..n ZﬁmG ai, 5 9)Gn—i(Qit1, . dn) , (2.23)
with Q1 =dq1...4 and Ql + Q2 =k
Therefore, the two Newtonian dynamical equations become algebraic equations with the time-dependence removed:
nd™ — o = 4, . (1 +2n)0™ — 35 = 2B, | (2.24)
and the well-known recurrence formulas for the solutions are
2n+3)(n—-1) ~’ 2n+3)(n—-1)"

and similarly so for the SPT kernels

n—1

n—1
G; G,
= Z m (T +2n)aioFy i +2B12 Gni m BaioFr_i + 2n812Gn—;] .
=1

i=1

(2.26)
Up to the third order in perturbations, with F; = G; = 1 these SPT kernels are explicitly

5 2 -q2)? . 3 4 . g5)2 )

F, = 7+7(Q12C122) qdi1 - d2 <Q1+LI2) 7 G2:7+7(Q12(122) qd1 - d2 <Q1+QQ> ’ 2.27)
T qig; 202 \2 @ T 4 212 \2 @
2k Qa3 7 Q12 7 qi

F = — { G2(q2,q3) + cycl. | + —k - | 5=G2(q1,92) + cycl. =k |5 F(az,q3) +cycl.| , (2.28)
54 47933 ( ) 54 T ( ) 54 a ( )
k2 1

G3 = — {ql s Ga(qz,q3) + Cyd} —k- {qm G2(q1,92) + Cyd} + —<k- [qglF2(Q27Q3) + Cyd} - (229)
9 a33 18 aia 18 41

Using the recurrence relations, the SPT kernels F,, ~ G,, «x k2 for n > 1 in the limit ¥ — 0, with the individual momentum q; held
finite. This originates from the momentum conservation of the nonlinear evolution.
e Compute the one-loop power spectrum

2.1.3 Asymptotic Behavior

The leading-order terms for the one-loop power spectrum are

d? . .
Pn = 2/ (27;)]3 PL(q)PL(k — af) [Fa(a,k — )] lim Fo(q,k —¢) = lim Fo(g,k —¢), (230)
e 3r 4+ T — 10rp?
dlng b ,
14r(1+7r2—2rp)
d3
q 3Pr(q) 1 [6Kk% — 79Kk%q® + 50k%q* — 2165 (¢ — K?)3(7¢®> +2k?) | |k+q
= 6PL dIn In »
272 24 63k2¢* 42k3¢5 k—q
where the solid angle integration of Fj is performed over q. The asymptotic behaviors are
k”—)oo if k—oo(q—0) ) 61 o if k—oo(qg—0
Fy { (3 5u2)k? . F3 — 1220‘12 . ( ) , (2.32)
=g 0 i k= 0(g— o0) —Tsg7 — 0 if k—0(q— )
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where the angle-averaged Fy is the square bracket above with 1/24. The one-loop terms asymptotically approach, and the leading
correction after cancellation of two terms is

. . K2P(k) [
k;ll)nolo P22 = kli{{.lo —2P13 = 67r2 /O dq P(q) 5 (233)
(o)
klim (Pag 4+ 2Py3) x 0+ P(k:)/ dq ¢*P(q) < P(k) x 00, (2.34)
— 00 0

where the learding term k2 P(k) is cancelled. For a scale-free power spectrum Pr, oc k™, Pao diverges with n > 1/2 at UV and
n < —1 at IR, while P;3 diverges withn > —1 at UV and n < —1 at IR. The sum diverges withn > —3 at UV and n < —3 at IR.

Peebles Argument

Given the matter number density (or galaxies), the nonlinear correction can only give rise to k2 in the large scale limit. The galaxy
number density can be written as

N N
ng(x) = Z 6P (x — %), ng(k) = Z e ikexi (2.35)

Compared to the position at the initial time, the galaxy number density can evolve due to nonlinear gravity as

N N
Ang(k) = / d*x [ng(x) = ng(x; ty)] e71X = p e — T =y emen [eriledx ]
N N
= > e N (1-1) —ik- Ax; — (k- Ax;)? + - | o kP (k) (2.36)
i J

The first term vanishes due to mass conservation, and the second term vanishes due to momentum conservation. Therefore, the
correction should fall as k2, compared to the initial.

2.1.4 Unified Treatment of the Standard Perturbation Theory

The master equation for SPT can be rephrased as

0
{6@ on " Qab(n)} Tolkit) = Aar®o(kst) ni=InD(t), (2.37)
d*k; d°k
- /(2177)32 5D(k*k1 sz)vabc(kl,kQ) (I)b(k1;t) (I)c(kz;t) 7

where ®, = (0,1, —0/f) = (6m, I ) in the linear regime, 6§ = V - v/H, the time-dependent matrix and the vertex funtion are

. 1 LR o (@b =(112)
- 1 ki ko . _
Q= _3q 0 Sq -1 Yaneller ka) = 4 2 11(+k|kf i (@bo=(121)
g2 22 ™ loalbatiel o (a,b,0) = (2,2,2)
;  otherwise
(2.38)
The formal solution can be obtained as
) = L n [ Pdke o L "
(I)a(k7 77) - gab(n7 770) Up 5O<k) + d77 gab(777 n ) (27_(_)3 6D (k kl k2) ’chd(klv k2)¢)c(k17 n )q)d(k% n ) . (239)
Mo

From the master equation (2.38), the power spectrum is the integral of bispectrum, and so on. This hierarchy arises from the
nonlinearity, and it must be truncated to solve it self-consistently.
With the definition of the nonlinear propogator, the linear propagator satisfies

3P4 (k; ) > 7

0
6D(k - k/)Gab(|k|7 7, 77/) = <5q)b<kl§ 77/) 0= |:5ab8”7 + Qab(n)] gbc(nv 77/) = AavGbe gab(na 77) = dab »

(2.40)
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and the power spectrum can be expressed as

Pay (ks m) = Gae(Kln, m0) Goa k|, 110 ttctia P (ks 10) + Pry™ (K3 1, m0) | Gap(kln,n'") = gap(n,1') + G (ki m, ')

(2.41)
where u, = (1,1) represents the growing mode solution and the mode-coupling terms are defined by the above equation. See
Eq. (2.182).

2.2 Galaxy Bias Primer

Galaxies form in an over-dense region of the matter density fluctuation. The matter density becomes more linear and smooth at high
redshift, so it is easier to deal with the matter density evolution at higher redshifts. However, galaxies form in a peak, which becomes
increasingly rare at higher redshifts. Consequently, galaxies of the same mass or luminosity are more biased at higher redshifts and
more difficult to model.

At the linear order in perturbations, the matter density fluctuations evolve as b = 0. Assuming the linear bias relation §; = b 6,
and no velocity bias (i.e., the motion of galaxies is the same as the matter distribution, in response to the gravity), we derive the simple
evolution equation for galaxy bias:

by —1

Om =0 =0, = by, + by, din(b—1)+dlnD =0, b(z) — 1 5

(2.42)

where the growth factor is normalized today. Biased objects (by > 1) are even more biased (b > 1) at higher redshifts, while unbiased
objects (byg = 1) remain always unbiased (b = 1). However, smaller objects (by < 1) are less and less biased at higher redshifts,
yielding b < 0 beyond the redshift z, where by = 1 — D. Certainly, this model is a simple approximation.
At higher redshift, the halo power spectrum goes as b?(z)D?(z), compared to the power spectrum at z = 0. Even for by > 1, the
product
b(z)D(z) = D(z)+by— 1, (2.43)

decreases with redshift. While true that biased objects with by > 1 are even more highly biased, the increase in the bias factor is not
enough to make up for the decrease in the growth factor D.

2.2.1 Renormalizing the Bias Parameter

Beyond the linear-order in perturbations, the galaxy bias model (and the perturbation theory to some degree) has several issues, which
demands a certain type of renormalization (McDonald, 2006; McDonald and Roy, 2009). Consider a simple galaxy bias model:

1 1
ng =mng+npd+ §ng 5+ Eng' B +e+04), (2.44)

where € is a shot noise and ng is some function. We will work only up to the third order in perturbations. The mean number density
is then )

(ng) = mno + §n302 +04), o? = (6%, (2.45)
and in the absence of a UV cutoff, the variance o2 is infinite, or at least potentially large, which signals the breakdown of the
perturbation theory. This is not necessarily problem, as we work with the fluctuations around the mean:

— 1 1
8y = L GTY R S P (02— 02) + —c30° + e + O(4) (2.46)
(ng) 2 6

where the bias parameters c; are the usual and € has been re-scaled. In Fourier space, the galaxy fluctuation field is

1 d3q 1 dBar dqo
5g(k) =10k + 562 / (QT)B 5q6k7q + 603/ (271_)3 (2’“—)3 5q1 6q25k7q17q2 + ex + 0(4) , 2.47)

while the matter density fluctuation is

d3q

5k:61(k)+/(2ﬂ_)351(q)51(k_Q)FQ(q,k—q)+/ Pqy dPqy

(2m)* (2m)°

d1(a1)d1(az)d1(k—a1 —qz2) Fs(d1, 92, k—q1 —q2)+O0(4) ,

(2.48)
where the subscripts indicate the perturbation order.
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Combining these two equations, we derive the galaxy power spectrum as
2 2, 68 2
P,(k) = Ny + |c] +cicgo” + iclcga P(k)

vz [ g;; PloP(k-a) +2ei0; [ (gﬂj PPk —a)Fa(ak—q)+06),  (249)

where P(k) is the linear-order matter power spectrum. With quite ill-defined o2 present, this equation suggests the redefinition of the
linear bias parameter:

68
b% = cf + cies0? + 5010202 . (2.50)

The point is that b; should now be treated as the free parameter of the model, with ¢; and cs3 eliminated from the equation by
substitution. In addition, there exists another potentially divergent UV-sensitive term:

/ (;ﬁp(qw(k—qn, @s1)

which diverges at high ¢ if the asymptotic logarithmic slope of the power spectrum is neg (¢ — 00) > —1.5 (this is not the case for
ACDM). Since the initial power spectrum at high & is quickly completely erased and the theory is unlikely to be valid at such high k&,
the perturbation theory results should be devoid of high-k sensitivity. Another issue with this term is that it is non-zero in the limit
k — 0, and it appears as a correction to the scale-independent shot-noise. Therefore, we now perform our final renormalization (up
to this order), absorbing this potentially divergent term, evaluated at £ = 0, into the shot-noise term, which becomes

d3
N i= No+ L2 / G @) (252)

After this piece is absorbed into the shot-noise, the remaining integral

3 3 .
/ (Z&,P(q) {P(Ik qal) - P(q)} ~ / (ZW?:jP(q) (ukdiflq)> +O(k?), = k]qu , (2.53)

is clearly convergent for any reasonable power spectrum.
The second bias parameter ¢, is not renormalized at this order, but for notational compactness we define

bg =C2, (254)
and the final result for the power spectrum is:
dq
(2r)
Note since the last term with ¢ cs is already O(4), ¢1 in that term can be freely replaced by by, completely removing cg at this order
as an independent parameter at this order in perturbation. The only correction to the linear-order galaxy power spectrum (which are
free by and N parameters) is now bo.

The calculations become more involved, as we include more observable statistics such as the galaxy bispectrum, the galaxy-matter
cross power spectrum, and so on.

P =N+ P )+ 3t [ 28 P [Pl-a) —P@ | <20 [ S8 @ P k-a) lak-a) . @59

2.2.2 Summary of Spherical Collapse Model

Full extension of Kaiser (1984) to IN-point without approximation (thresholded sample), they have

oo miz , mi3 2cH,,_ (1‘)2_”/2
14 e) — Wi~ W3 A A A An =1 A, = n-l 2.56
e mZ:o mia! mas! o N 0 7 Vrzererfe(r) (20
where 2 = v/v/2, w(r) = £(r)/o?, and
m= mu, mg =0 ifk>1. (2.57)
o l
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In the limit lim,,_, o, A,, = v (thresholded sample becomes a peak sample), we have

2 2,,m13

1+§£N):ZVW12 Vw3

' ' - = exp [Vz(wu +wiz+ - )] ) (2.58)
miz: mi3:

m=0
corresponding to the Politzer and Wise (1984) equation. For the two-point correlations, we have

oo

L= o (2.59)
m=1

The thresholded correlation vanishes, whenever the matter correlation vanishes.

2.2.3 Renormalized Galaxy Bias

Assuming the galaxy number density is a function of smoothed density field, one can perform a naive expansion:

Z52x)+... (2.60)

ng(x) = Fy[o(x); x|, Gg(x) = co + c10(x) + 5

where 0 is a smoothed matter density with some filter R, ¢, are the bias parameters. Additional dependence on x indicates that
there exists some stochasticity on small scales (this scatter is equivalent to the dependence of n, on the small-scale fluctuations J
in the given region), but for Gaussian case this stochasticity does not matter on large scales. When two-point correlation function is
computed, the correlation function depends on the zero-lag correlators (e.g., o and hence the dependence on the smoothing scale R),
signaling the break-down of the local expansion.

This is to be renormalized, absorbing the zero-lag terms into the bare bias parameters. It is observed that when é, and d,, are
plotted, the bare bias parameters determined from the scatter plot change as a function of smoothing radius R. But on large scales,
the correlation function should be independent of R. Physically, the renormalized bias parameters quantify the response of the mean
abundance of tracers to a change in the background matter density p of the Universe

— p N, _ b3 N
by = &(r) = NZ N O 2.61)

where the latter holds for a Gaussian density. Note that renormalization removes the zero-lag matter correlators from the expression
for the tracer correlation function at all orders, and that the same bias parameters by describe both the tracer auto- and the cross-
correlation with matter.

Basics

The PBS argument can be summarized as follows: if the description of the clustering solely through their dependence on § is
sufficient, the expected abundance of tracers in a region with smoothed overdensity § = D is sufficiently well approximated by the
mean abundance (n,) in a fictitious Universe with modified background density p" = p(1 + D). The advantage of this approach is
that we only need (n,), not F:

o0 —
Cn 1 9N (ny[D]) p 0N (ng)
= (F,[0 —{((6 4+ D)" by = ——F=~7— = -— . 2.62
Starting with the assumption of n,4 above and assuming that the small-scale fluctuations are not correlated, we have
- 1 n n n n n n
ng(x) = ﬁFé 6 = 0;x] [6(x)]" (Fy10:x] [5(x)]") = (Fy [0:x]) (6()])") (2.63)
n=0
and then the mean is
1 1
— — { FMp- ny _ €2 2 j — (n)
(ng(o)) = 32 5 (F310i) (%) = (oD (1+ Gk + sy +.) owi= gy (FV0) - 26d
The renormalized bias parameter can be derived by using the PBS argument in Eq. (2.62)
by = NZ T Ny N = Z—ﬁ . (2.65)

n=0
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Using the binomial expansion

s Y () e mae).. oty =33 (1) b (7)ot . 60
N=0 k=0 1=0
the two-point correlation function is derived as
Donm—o e (07(1)6™(2)) — by b = n
&,(r) = e 0 nimt = G == %%(51\’(1)61”(2»“1, N = Z% (2.67)
n,m=0 nlm! N,M=1 ’ ’
a0 (MA2) 1 gm e x (1) ey N b
tonir) = Bt L S ()66 e = 3 R e @
where nzl: no zero-lag correlator.
e Example 1 — Universal mass function:
o (_1)N oN <ng> _ (_1)N 1 de(VC)
S T R S oA R 7 2o
e Example 2 — Thresholded sample:
(ng) = Pi(ve) = % / dze /% = ;erfc(\y/%) : (2.69)
P. s 2 c 2 2
g,(r) = Mq:ﬂkﬁ%%)] Z []i(f [Hx_1(ve)] e (2.70)

which are consistent with the renormalized bias parameters.

Curvature bias

Now, consider additional dependence on the coarse-grained Laplacian of the density field, i.e. the curvature, and we follow the same
procedure:

N 1 OF,
ng(x) = Fyld(x); V=i(x);x], Cyz2s = AN <8(V25) ’6=O,V25=0> , 2.71)
&(r) = F(6(1)8(2)) + 2c1ev26 (6(1)V?6(2)) + O(VEE) = ¢ [€(r) + 2R*VZE(r)] + 2c10925V2E(r) + -+, (2.72)

which is again phrased in terms of disconnected matter correlators and R-dependent bare bias parameters. We need to introduce a
R-independent PBS bias parameter for V2§ as before. We would like a transformation where the Laplacian of the density perturbation
shifts by a constant:

- (0%
V25, (x) = V25(x ”ﬁ 5 Sa(x) = 0(x )—l—@(xz—i—A-x—i—C) — 8a(x) = 3(x) + 5% (2.73)

where « is a dimensionless small parameter, we have added a constant length scale [ (which will disappear in by), and we used
symmetry argument to remove A and C. We can now defined a (renormalized) PBS bias parameter through

120 (ng[0;al)
by2s = — g 2 . 2.74
v (ng) O a=0 @74
non-Gaussianity
In a traditional way for computing the primordial non-Gaussianity, we have
&(r) = BIEL(r) + bibz (6(1)6%(2)) + O(8Y) (6(1)6%(2)) = 4fxro%Ens(r) | (2.75)
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where the appearance of o2 indicates that the description of the tracer density as a function of the matter density § alone is insufficient
even on large scales in the non-Gaussian case. Instead, we need to include a dependence of the tracer density on the amplitude
of small-scale fluctuations. This dependence is present regardless of the nature of the initial conditions; however, only in the non-
Gaussian case are there large-scale modulations of the small-scale fluctuations, due to mode coupling, whereas in the Gaussian case
we were able to neglect the small-scale fluctuations in the large-scale description. For simplicity, we will parametrize the dependence
through the variance of the density field on a single scale R, < R < 7.

We first define the small-scale density field as the local fluctuations around the coarse-grained field d:

: P’k - e ~ - -
0s(%) = 0.(x) = d(x) = /d“y[W*(X —¥) = Wr(x—y)ld(y) = / WWe(kﬁ(k)e’k ; Ws(k) = We(k) = Wr(k) .
(2.76)
We quantify the dependence of the tracer abundance on the amplitude of small-scale fluctuations through
_1 /(8 x) 2 2 &’k 2
wi =g (250 -1) 7= () = [ s PP®), @)

In the Gaussian case, £;(r) — 0 for » > Ry, so that the small-scale density field and y. have no large-scale correlations. We now
generalize to explicitly include the dependence on 7/, '

(x) = F, [5(x), 9. (x): (ny) = (Fyfo]) 3 <o (g L (o
X) = X), Y« X)X = x /> nm = .
"t glO\x) Y Mg 9O 2 1Y ¢ (F,[0]) \ 9670y |5=0.y.~0
(2.78)
Then the two-point correlation function is
1 - CnmCn/m/ n m n’ m’ = Cnm n,m
§o(r) = e Z i T <5 (Dy"(1)6™ (2)ys (2)> -1, N = Z il 0"y (2.79)
n,m,n’,m'=0 : n,m=0
and to the lowest order
1 2
Eg(r) = N2 { (cio + croc300”) &(r) + %5(7’)2 + (2c10c01 + o1¢3007 + 2¢10¢200°) 2fn1Eps (1) + 26116202fNL§¢5(T)§(7’)}

(2.80)

We would like to introduce a physically motivated bias parameter which quantifies the response of the tracer number density to a

change in the amplitude of small-scale fluctuations, without making reference to any coarse-graining on the scale R. The simplest way

to parametrize such a dependence is to rescale all perturbations by a factor of 1+ ¢ from their fiducial value, where € is an infinitesimal

parameter. Note that this means that the scaled cumulants (6}') . /o are invariant, whereas the primordial non-Gaussianity parameter
fnL ~ Bs/ P¢2,, if non-zero, scales as (1 + e)*l under this transformation. Specifically, under this rescaling § and y, transform as

62 2X
R N R G ko @s)

where the parameter o2 in the definition of . is just a constant normalization, and does not change under the e-transformation. This
is in analogy to keeping p fixed in the D-transformation. We can then define a set of bivariate PBS bias parameters by s as

1 6N+M n .
by = N< ng” . (2.82)
<”9>D:o,e:0 DN Oe D=0,e=0
2.2.4 Gravitational Tidal Tensor Bias
The traceless tidal tensor and its simplest scalar are
I x 2 2 d*q (ki -ko)* 1
Sij = Biajq)_géij&a 87 = 8ijSij , s°(k) = /W 0q0k—qS2(q, k—q), So(ky, ko) = T2 3
(2.83)

! Although this approach here is formally similar to the bivariate local expansion in § and ¢ adopted in Giannantonio and Porciani (2010), there is somewhat of a
conceptual difference. The effect of non-Gaussianity, and the fact that it derives from a potential ¢, only enter through the expressions for the correlators between &
and yx here. The nature of non-Gaussianity thus decouples from the description of the tracers (which only know about the matter density field) in this approach.
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where ® o< o, is a normalized potential. Interestingly, the gravitational instability generates the tidal contribution. By using the SPT,
we have

d3q 17 1k, ko (k1 k 2 [ (ki -ky\* 1
@)(k) = Fy(q,k — Fp=—4+-— 22 2) 2 (22 =2) _= 2.84
7 (k) /(2)”“"‘“’ al 2T T 2 ke ke R 7k 5| @89

where we have re-arranged the usual Fb, representing the growth, the shift, and the anisotropy. In configuration space, we derive

17 2 2
5@ (x) = [5< >} —w v (x) + 22, (2.85)
21 7
Note that i v "
X _ Ry
IUX:_757 V:—T—Hf\:[,, \I,—ﬁ(S, (286)
where W is the usual Lagrangian displacement vector.
Up to the second order in perturbation, the nonlinear matter fluctuation is
d(x)=4d(q)+ ¥ -Vi(q) +0(3), (2.87)

and using the conservation the halo bias in Eulerian space is related to one in Lagrangian space as
1
1+ 6n(x) = (1+3(x))(1+ (@) , on(a) = brd(a) + 5b56%(a) + O(3) . (2.88)
By removing the displacement field ¥ in favor of s? and §(2), we derive the halo bias in Eulerian space:
Ly ((1) 2) ARV ETTAYS 212
Sn(x) = (14b%) (5 (%) +0 (x)) + ( gpof + 505 ) 0260 - Zbfs? +03). (2.89)

This shows that despite the fact that the halo bias depends only on the matter density in Lagrangian space the nonlinear evolution
generates a bias factor in proportion to the tidal tensor in Eulerian space.

2.2.5 Halo Exclusion

Here we consider the effect of a finite size of halos on the power spectrum. By definition halos are some objects with a finite size,
such that at a separation below the size, the correlation function fz becomes —1, and this is called the halo exclusion, where we used
the super-script d to emphasize halos are discrete objects with fﬁ = —1 at some separation, as opposed to continuous fields with
super-script c. The power spectrum of halos is then

o) R [e’)
Pu(k) = / B3z e ¢l(z) = 4m /0 dr 2 €X(r)jo(kr) = 4n l /0 dr + /R dr} r2&8(r)jo(kr) , (2.90)

where we simply split the integration range around the size of halos (R: virial radius) and assumed for simplicity all halos are of the
same size.
The first term is simple, as §,Cf = —loverr < R:

R
4
47r/ dr r2jo(kr) = V x Wg(k) , V= %Ri” : 2.91)
0

where we defined the window function Wgr(k) and V is the exclusion volume. The second term can also be arranged in a more
illuminating form as

- / dr r2€3(r) jo (kr) = 4r [ / dr [ennt, — Enin] ( / dr €5 1 (r / dr €5 1 (r )]Tjo(kﬂ“) (2.92)

where we removed d, because xip # —1 at r > R. Adding two terms, the halo power spectrum is then obtained as

o0 . 1 R .
P,’f(k) = -VWg(k)+ 47T/R dr (&n, NL — &h lin) 250 (kr) + Py i (k) + o 471'/0 dr rzgg)hn(r)]o(kr) . (2.93)
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In the limit size is zero (R — 0), the halo power spectrum is the usual non-linear power spectrum plus a Poisson shot-noise:

° 1
Pi(k) = 4m / dr &; 1, (r)r?jo(kr) + —. (2.94)
0 h
In the limit £ — 0 the halo power spectrum gives
oo 1 "R .
lim P}?(k) =-V+ / dBT (Eh,NL - gh,lin) +0+ — — / ddr 5}61 lin(r) ) (2.95)
k—0 R np 0 ’

which should be the shot-noise in reality. Compared to the Poisson shot-noise, the exclusion terms (first and last) contribute negative
power to the shot-noise, while the nonlinear effect contributes positive power.

2.2.6 Miscellaneous

Stochasticity

The stochasticity can be defined as

_ (Om(R)Ox(R)) (k) = Fmx (k)
r(R) == Box(®) (k) OOk (2.96)

and r(k) = 1 to the linear order, while r(R) can be scale-dependent to the linear order, if by (k) is scale-dependent. To the lowest
order contribution to the stochasticity, we have

_ 1 d’k' ! 1.\12 / ot (b%)z d°k' "2

where the latter is the large-scale limit (by — b%) with constant Lagrangian bias. Nonzero b can generate stochasticity.

Deterministic (nonlocal) Bias Arguments

The peak-background split method is necessary because the halo approach is based on a statistical nature of extended Press-Schechter
mass function. In such an approach, the local mass function is obtained by averaging over small-scale fluctuations, while large-scale
fluctuations are considered as background modulation field, which leads spatial fluctuations of number density of halos. Comparing
the fluctuations of the halo number density field and those of mass, the halo bias is analytically derived. However, the biasing can
be seen as a deterministic process at a most fundamental level, in which any statistical information is not required. One can think
of getting a halo catalog in numerical simulations to understand the situation. Just one realization of the initial condition determin-
istically gives subsequent nonlinear evolutions and formation sites of halos. When only leading growing modes are considered in a
perturbation theory, any structure in the universe is deterministically related to the linear density field. The biasing relation should
not require statistical information of the field. Any statistical quantities, such as the short-mode power spectrum in the method of
peak-background split, are not expected to appear at the most fundamental level.

2.3 Lagrangian Perturbation Theory

2.3.1 Basic Idea: Zel’dovich Approximation

Zel’dovich provides a model for the Universe, which is the linear order approximation of the Lagrangian perturbation theory. The
Lagrangian Perturbation Theory attempts to provide description of the matter and the galaxy distributions today by modeling those
at the very early (initial) time and tracing their motion until today. The matter density is more linear and smooth at early times. So
the critical quantity in this approach is the displacement field ¥ that relates the initial (Lagrangian) position q to the final (Eulerian)
position x:

x(q.t) = q+ ¥(q1). (2.98)
Rather than modeling the density and the velocity in the Standard Perturbation Theory, the Lagrangian Perturbation Theory models
the evolution of the displacement field. Therefore, when completely expanded at each order, they both agree, but in general the LPT
expressions correspond to the SPT expression with non-trivial ressumation of different perturbation orders.

With the mass conservation, the matter density today is related to its Lagrangian quantities as

_1+6q_
o

(1+8n)d%z = (14 6,)dq, 5(x) 1= /d3q (1+6,) 0" [:c —q— \Il(q)] —1, (2.99)
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where the last equation can be verified by integrating over d®z, and the Jacobian matrix is

ox’ _
Jij 1= g5 =0t Vi, (T 0 — W+, (2.100)
and its determinant is
—1 1y, \»
J = detJ;; =exp {Tr (Ind;; + \I/i,j)} = exp {Tr(z Hn(”))] (2.101)
n=1

1
L+ Tr (W) + 5 {Tﬁ(\yi,j)—Tr(qfi,j)z} =14V T4 (alefz 0,0, + - — 0,0, ay\lzz—.--) o

For sufficiently early ¢;, the initial density field for matter is often assumed to be zero:

6,=0 att=t;, (2.102)
hence the nonlinear matter density today is
d3q 1
146p =—=—=. 2.103
* Bz J ( )

Similarly, with the number conservation of galaxies, we derive
(1+dg)d’x = (1+0,) d’q, 1+, =(1+0,) (14 6m), (2.104)

where the (Eulerian) galaxy bias today and the Lagrangian bias are modeled as

§g(x) =Y b [ (@)™, (@) = > bioL()", (2.105)

in terms of the nonlinear matter distribution &,, today and the linear matter density d;, (linearly) extrapolated to the late time.

Summary
At the linear order (Zel’dovich approximation), we will obtain

k
) = iﬁcsﬁ,{)(t,k) , v="Hfew (2.106)

In general, the displacement field in Fourier space is generally represented as

n

&) (p) = Z.Dn/ Epi A @2m)*” (Y pi—p| L™M(p Pn)d0(P1) -+ - 60 (Pn) (2.107)
n (27’()‘3 (27‘()3 = 7 15---5Mn)00\P1 0\FPn) » .
and we have )
k 3k P1- P2
LW - rL® ==—|1- 2.108
(pl) k2’ (p17p2) 7 k2 Pip2 ( )
Equation of motion
Pressureless particles in an expanding universe are subject to the equation of motion and the Poisson equation as
i=-V,0, V20 = 47Gpnma®(1+46), (2.109)
where the usual relations are
1 _
r=:ax, Ve=-Vx, P=0¢+ 9, x=q+W¥. (2.110)
a
Using Jean’s swindle, we remove the constant motion in the Poisson equation:
.. ArC .. 1 B
N V- (a") = —47Gpm = ——5 V26, @.111)
a 3 a a
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to obtain 3 .
V26 = 4nGpma’s = §H29m(z) [J — 1] . (2.112)
The equation of motion in terms of comoving coordinates is then
- ) 1 . . 1 . I
x+2Hx:—¥Vx¢, ‘I’+2H\Il:—¥vx¢(q+\11) — JVx-\Il+2JHVx-\II:§H Qn(J-1),
3
X" +Hx' = -V, V' HY = -V,p(q+¥) —  JVi O +JHV, ¥ = 5Hmmu —1), (2.113)
where prime is the derivative with respect to conformal time.
Assuming that the time dependence is ¥(™) « D", we derive?
D=HDf v = pg e ) = g2, H + g +n| @™ (2.115)
) ) H2f Hf2 )
and by plugging in the equation of motion we obtain
. . H f 2 3Q
. = 22, | = 1 L 2] = () 2 2 _ 2im
Vi - W+ 2HV, \I:_zn:vx UM H2 2 H2f+Hf2+n+f _znjvx v g2 f n{n 1+5 f2} . (2.116)

For a ACDM universe, we derive a non-trivial identity

H ;o2 3Q,
w2t ap +?_§?_1, (2.117)

but as in the SPT, as long as €2,,(z)/f? ~ 1 the time-dependence of the displacement field can be separated, and the equation of
motion is

Vy W4 2HV, - & = gHQQm (1 — ;) — Ve -¥Mp [n —1+ 2?{;} = g% (1 - 3)<n) , (2.118)
The peculiar velocity field needs some care due to coordinates.
v(q,t) = ax = a¥(q, 1), v(x,t) = a®(x — O, 1) = a¥; — al; ;¥ 4 - - -, V,xv=0, (2.119)
where we have 5 0 8 5 5 5
x=@=%@= (J_l)ji@’ o = it (2.120)

Note that v(q, t) is the velocity assigned to particles that are initially placed in a grid at q and then displaced to a position x in the
Zel’dovich or 2LPT simulations.
In the original Zel’dovich paper, strange notations are used:

3w (k) 6M(q)
o =— DG~ R (2.121)

Initial Condition in Numerical Simulations

In numerical simulations the initial density distribution is set up at the initial redshift z; ~ 50. By using P(k, z;) one generates
SEul (g, 2;) = %9l (q, 2;) + O(2) and use 6% (g, 2;) to generate the displacement field at each grid. Finally, particles at each grid
is then displaced by using ¥.

2Sometimes, it is assumed

3
(™ « D, , Di=D, Dy = ?D2, fo= =2f . (2.114)
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2.3.2 Resummation in LPT: One-Loop Power Spectrum

Following Matsubara (2008), the polyspectra of the displacement field are defined as

(Wi (1) Wiy () = (2m)*87(p1 + -+ ) (=) 2Cipcin (1, PN (2.122)
where ¢ = x,y, 2, representing a vector (including scalar) quantity and the Fourier transformation is
p) = [ g mHwia). (2.123)

The relation p; + - - - + py = 0 is always satisfied because of the translational invariance. The factors (—4)™ =2 in the RHS are there
to ensure that the polyspectra C;, ... are real numbers:

Ui(=p) = ¥} (p) = Cipin(—=P1,-+,—pN) = (=) iy (P1s- -, PN) (2.124)
Note that this relation holds in general. For the displacement field, we have another condition:
<‘I’ (P1) - Wiy (PN)>C = (=Y <\Tfi1(p1)-~-\i/m(pzv)>c : (2.125)

which together guarantees that the polyspectra are real. For N = 2, C;;(p) = C,;(p, —p), for simplicity. By using Eq. (2.99), the
power spectrum is obtained as

Plk) = /d3q ik {<efm-[\p<q1>f\1:<q2>}> _ 1}
Z.. k; I Ky, Ky
= exp[ 22 LT Agfm,%] /dsqe ““l{exp lz WBff?iN(q)] 1}, (2.126)

n=1 N=2

where we have

N-1
N N i
(I = ™) = 1 GO e 0, X 07 () (e 0¥, @127)
c j:l
3 3
(2n) _ d°py d’pan 3¢D
A i = / enE " 2n)p (2m)°6% (p1 + - + DP2n) Ciy i, (P15 -+ - s P20) (2.128)
N—-1
i N d3p1 dspN i .
BW). = —1)i-t X / 2m)36P iprttpi)a o )
11...1N(q) j:1( ) j (27_‘_)3 (27_‘_)3 ( ﬂ—) (pl + +pN)€ 1 N(pla 7PN)
The calculation is done at the one-loop power spectrum: all we need are
d*p 2 &Pp
A@:/ B,(,):2/7
1] (27’[’)3 C](p) ) 7 (27’(’)3 € C](p) ’
d’p1 [ d’py T ;
B® — 3/ / [ iP1q Z(p1+p2)-q} Cy; —pq —
ijk — (2ﬂ)3 (27T)3 e € gk(pl’p% P1 P2) s
Cij(p.—p) = CV + P + Y + oY Cije(P1,p2,p3) = CL2 + U2V + oGV (2.129)

and hence the power spectrum is

d? kik;kik d?
— exp [—kiijgj.)] [kikjcij(k,—knkikjkk/(27:';30%(1{, —p.p— k) + ’/(%I)’Scij(p)cij(k, —p)
With this, the resulting one-loop power spectrum is
00] k2
P = o[- [an )] [ + B3R + ) [ o] Q.13
where we defined )
knt o= = 2/dpPL( ). (2.132)

When expanded, it is identical to the SPT at one-loop, but due to the resummation, it differs from SPT. The LPT formula breaks down
at k ~ kyr, due to the exponential damping.
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2.3.3 Zel’dovich Power Spectrum

The Zel’dovich approximation is basically the linear order LPT, in which the displacement field is computed only at the linear order
in perturbations. However, these quantities in the power spectrum are not expanded, but kept in the exponential, such that it is a
nonlinear analytic solution under the assumption that the displacement field is only linear.

Defining the 1-D rms displacement, we have

1/ Bk Pn(k) 1

1 oo
oyap = g<|\I:|2>= 5] @ R @/0 dk P(k) = I5(0) , (2.133)

where we defined

0= [ 5k Palo)ioa). (.134)

To the linear order, we just need
AR = (2,(0)%,(0)) . kikj A = Kad, (2.135)

to derive the power spectrum as
P(k) = exp [—k,»k;jAEf.)} /d3qe_““'q {exp [kfj ng)(q)] - 1} , (2.136)

where we omitted 1-D in the notation. Assuming that q//Z and k in z-z plane (u; = q - k, p1, = p - @), the term in the exponential
can be written as

2
kikjpip; = <kp\/ L — pa /1 — p2 cos ¢, + kpukup> ) (2.137)

kik; * p2dp [d ey o kikipip;
Y g (q) = /O 2W2/%/0 Sk B b (p) (2.138)
oo 2
pdp Pn(p) [dpp ; o122 | 1 2 2 2,2
- /0 oz pp ) 2 Ok |G ) =)+ i

= (1= ) lola) + L) + Fidlle) - 20()] = ~ 5K (1 - ol (a) - SKudot () + Ko

where the cos ¢,, term averages out, the cos? ¢, term yields 1/2, g = q; — g2 is the Lagrangian space position in configuration space,
and

of = <[‘1’u(ql) - ‘I’\|(qz)}2> =20y — 21o(q) + 412(q) , (2.139)

ot = ([Wila) - Vi(a)]) =205 — 2lo(a) — 212(a) lim o () = limof(g) =0.  (2.140)

q—0

2.3.4 Galaxy Bias in the Lagrangian Frame
The local Lagrangian (deterministic) bias factor is introduced as

dA

(F)=1, Pobi(@) = Do FI6r(q)] = 1+ 61 = Fl6r(q)] = / 5 €N ED), (2.141)
and then the power spectrum is then
P(k) _ /d3q e~k [<€7’L—k’z[‘1/z(q2)7‘llz(ql)] (1 + 551) (1 4 552)> _ 1}
= /d3q e~ tka /&@F()\l)ﬁ(kz) <€i[/\15n(41)+)\25R(Q2)]*ik'[‘1’(111)*‘1’('12)]> 1. (2.142)
2 2m

Using the cumulant theorem, we have

<ei[>\16R(q1)+A26R(q2)]—ik:A[‘Il(ql)—\Il(qQ)]> — exp Z jnitnz+mi+ms MM B (k) 2.143)
nllng!mllmg! mim2 ’ ’

ni+no+mi+mo>1
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where the multinomial theorem is used and using the translational invariance and the parity symmetry B;1"2 = B2" we have

Bl (kiq) = (=1)™ ([0r(q1)]" [0r(g2)]"™ (k- Wq,)™ (k- ¥q,)™),
= (—lymtmapnem (p _q) = (—1)m1+m2B;11’;gQ (k,—q) . (2.144)

For a Gaussian (initial) random field, we have a few cases, where we can solve

Erlg)), mi=mn2=1,
By (k,q) =< 0%, (n1 =2,n2 =0)or(n; =0,np =2), (2.145)
0, otherwise,

and for n; = no = 0 (matter part) we have

Aop(k) = ([k-T(O)*™), | Binym, (koq) = (=1)™ ([k - ®(q1)]™ [k - ¥(g2)]™). ,  (2.146)
Ao (k) (my = 2m,my = 0) or (m1 = 0,mg = 2m),
BY (k@) = < Bum(k,q), my>1landmy > 1, (2.147)
0, otherwise .

Therefore, the resulting power spectrum is in full generality

Poi(k) = 2 3 (_1)mA k d3qeka 3 LﬁwB k
obj( ) = €xp Z (Qm)' 2m( ) qge exp Z ml!m2! mlmz( aq)
m=1 mi,ma>1
dAy dy - 3 [ +Oaon)? S~ gttt nepmn
X[mgTF(Al)F(AQ)E s{on ™+ Caon) oy | A Nobr(lgl) + Y el A2 Bl (k. @)
ny+n2>1
my +mo >1
—(2m)%5p (k) . (2.148)

With one-loop corrections, the real-space power spectrum can be obtained by expanding the above big square bracket as
2 A2 9 3 1 A |6
Pai(k) = exp [= (t/kwu)’] § (L () PL(R) + o2 Qulk) + 2Qa(k) + 5Qa(k) + (F) | 2Qs(k) + 2Q=(k)

) [ Qs (k >+Qg<k>} D2 [QuR) + Qur ()] + 2(F) (F")Qualk) + L (F")2Qus(h)

2 (4 () [Ra(k) + Ra(k) — o (14 (') m(k)} , (2.149)

where the Lagrangian linear bias factors are

6”6L d\ -~ 2.2 X 1 > 52 2d"F
L_ [O%0L\ No% /20 \)n 62/20 _ [pm
s < 9oy > /— QWF()\) (i3) V2moR / doe de™ <F > (2.150)

At the linear order, we have the Eulerian bias b; = 1 4 (F"), derived without assuming spherical collapse.
e compute the scale-dependent coefficients

2.3.5 Perturbation Theory and Nonlocal Bias

Considering the translational invariance (given density fields, coordinates can be freely chosen, i.e., origin and so on), the galaxy
fluctuation field can be written in terms of non-local bias (deterministic) functions as

Z ].' / l3x1 A d3£L'n bn(ﬂ? —T1,..., L — :I:n)(sm(a;l) . 6m(wn) , (2151)
n:
n=1
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and its Fourier transform is
1 [ APk
S« (k) = —
x(k) 7Zzlnl/(%r)?’

where kq..., = k1 + - - - + k,,, the bias functional is (and the renormalized bias functional)

Bhy s
e (27)368 (k1.n — k) X by (K1, ... k) Om(K1) -+ Om(Kn) (2.152)

Bk 575x (k')
_ 3n X
btk k) = @)™ @ 0m (k) 00 (o) |5, o @159
B 575x (k')
_ 3n X
otk k) = ™ PE <65L(k1> - ~-55,,,L(kn>> ’ @159

and should be rotationally invariant, i.e., b1 (k), ba(k1, k2, k12) and so on. Furthermore, the mass density contrast d,, () is also a
nonlocal and nonlinear functional of a linear density field 1, (x):

=1 [Pk Pk, 3.3
where the SPT kernels are the usual
10 (k1 Kki\ ki-ky 4 [ki-ky\’
Fi(k)=1 Fy(ki, k) = — — + — = . 2.156
1(k) ) 2(k1, k2) - +<k‘2+k‘2> Kk +7< erks > ( )
Combining the above, the galaxy fluctuation field is
1 [Pk Py, 3
ox (k) = ; o / @y (27T)3(27T) Op (K1..n — k) K (K1, ... kn)or (k1) -+ 6n(kn) , (2.157)
where we have K (k) = bi(k), Ka(ki1, ko) = by (k) Fa(kq, ko) + ba(k1, k2), and
K3(ki, ko, ks) = by (k)F5(ki1, ko, k3) + [b2(k1, kas) Fa(ka2, ks) + cyc.] + b3 (K1, ko, k3) . (2.158)

Similarly, we express the galaxy fluctuation field in the Lagrangian space at initial time as in Eq. (2.151), and the galaxy fluctuation
is moved via Lagrangian picture: z = g + W and (1 + 6x)d®z = (1 + 0%)d3q as

= (—i)m/d?’krl &k, k) Ak,
(2m)®  (2m)? (2m)%  (27)°

ox(k) = /d?’qe_““"’ [1+0%(q)] e @ — 2m)*sh (k) = )

X (27)303 (Ky.on + K, — R)VE (K, . .. kn)on(F) - - - O (Kn) [k - (L) - [k - @(E.)] . (2.159)

!/
1.--m
Combining the above, we derive the relation (and the relation between the Eulerian and the Lagrangian bias functionals)
Ki(k) =k - Li(k) + by (k) ,
Ks(Ki, ko) = k- Lo(k1, k2) + [k - L1 (k)] [k - Ly (ko)) + b7 (k) [k - L1 (K2)] + by (ko) [k - L1 (k)] + 05 (ki k2)
Ks(k1, ko, ks) = k- Lg(k1, ko, ks) + {[k - L1(k1)][k - L2(k2, ks)] + cyc.} + [k - Ly (k)] [k - L1(k2)][k - L1 (ks)]

(2.160)

+ {0} (k1)[k - La(k2, ks)] + cyc.} + {bY(k1)[k - L1 (k2)][k - L1(ks)] + cyc.} + {b (k1, k2)[k - L1 (ks)] + cyc.} + b5 (ky, k2, ks) .

2.3.6 Examples of Bias Models
e Local Lagrangian bias: with (Fx(dg)) =0

5% = Fx (6r) , b (ky, ... k) = F{(0) (2.161)
ks vden) = (FO6m)) = (1" [ dsn P 6) Fx(o) 2162
where we assume the smoothing kernel is unity W (kR) = 1, valid in the large scale limit. The thresholded sample is
Fx(6g) = AO(6g — &) — 1, A= (0(r—0)) " = [ :O d(SRP(én)] - , (2.163)
<F)((”)(§R)> = (—1)"A ;O A5 P™ (65) . (2.164)

29



AST802 Advanced Theoretical Cosmology Jaryur Yoo

Halo model bias factors are spherically symmetric, and hence they are local in both Lagrangian and Eulerian.

e Spherical collapse model: The number density of halos of mass M, identified at redshift z, in a region of Lagrangian radius Ry in
which the linear overdensity extrapolated to the present time is dg, is given by

n(M, 2160, Ro)aM = L fuw(') din/ v Sl o0 = o(Mo) , My = 2T oR3.

[02(M) — o] 3

(2.165)

The halo of mass M is collapsed at z, while Mj is assumed uncollapsed at z = 0, and thus we always have d.(z) > do. The

conditional number density represents the biasing for the Lagrangian number density of halos. The smoothed density contrast §y of

mass modulates the number of halos, and the number density becomes unconditional at Ry — oo (d9 — 0, o9 — 0). The density
contrast of halos in Lagrangian space is given by

dlnv/ a%(M) L n(M,z|do, Ro)

= 5h_

1= a*(M)  fur(v)
dlnv  [02(M) — 03]’

n(M, z) o2 (M) = o5 fur(v)

-1 — FX(5R0)7 5R—>D(Z)(50

(2.166)

To evaluate the bias functions, the derivatives F)((n) need to be derived, and we consider a limit of the peak-background split o2 (M) >
o for simplicity. In this limit, we have

n n (n) /

(n) 1 < 9 > L _ < -1 ) MF(V)
FM(5p) ~ A I : 2.167
x 0n)= 555 ) % =\ Brean) het) (2167
F{(0) ~ <F>((")(6R)> = 0L (K. k) = Rk, k) (2.168)

Using the PS, we have
n 7lilf[n L2 d\" 2

k) = (o) = () H) = () e Hops(v) = vHo(v) — 2 (9)
(2.169)

e Halo model example: Assuming a universal mass function (i.e., only depends on v/), we have

n(x, M) = _%8% [0as () — O], (2.170)
(O0pm(x) —6.)) = P(M,d.) = %F(V) , F(v) = /OO fMFT(V) dv , (2.171)

where for the original PS © is a step function, but it can be modified for other MF. Also, note that for the PS, there is no statistical
nature at a given point: it is either collapsed or not. Defining ©(")(z) := d"O(x)/dz" and using

n(@ M) elbketkoeos 9o
Sl sh ] @ araaE [0 B W R Wk R)] 2.172)
5op(x)  e*r® on(x, M)  2py O W eiki-z
501 (k1) (27r)3W(k1R)’ 5oL(k1) M oM O (0n — dc) (2W)3W(k1R) ; (2.173)

and noting that & (z) = n(x, M)/n(M) — 1 we have two equivalent expressions

0 [onP(M,5,
(1) BV %W(klR) e W(knR)]
chky,... k) = 5P(M5)
oM

_ Au(M) An 1 (M)oy™ d [W(kiR)-- W(knR)
=53 W (kiR)--- W (knR) + 5 T —

= EOOW (R R) Wk R) + At py Wk, R)

(SC dlnaM

An(M) ;:Zﬁag e (M), Ap =nA,_q + 6. b,

j=0""
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where Ag = 1, Ay = 1+ §.bF (M), Ay = 2 + 25.bF (M) + §2b% (M), and note that ¢ — bL in the limit & — 0 (there are a few
steps in the above calculations and cZ for n < 2 are explicitly computed).

e Multivariate Lagrangian bias: for multiple variables x,

Ga?p,y,
Xalq) = /d3q’Ua(q - q')ou(q), 5% = Fx (x1,X25--) xi=¢ = U= “Ta 7pq,| : (2.174)
where the last one is an example of additional variable.
0" Fx
bl (ky,. .. ky) = —_— Us, (k1) Ua, (ky) , (2.175)
(k1 ) Z Bms O | Uer(F) U (k)
O™ F:
L(ki,. .. k) = X NUy, (k1) Ua, (Kn) - 2.176
C”( : , ) oupznom aXOél e 3Xan 1( 1) n( ) ( )
The peaks formalism is a ten-dimensional multi-variate case:
npk = 0 (6r/or —v) dp (VoR) |det (VVIR)| 6 (N3) , (2.177)
(Xa) = (0r, VR, VVigr), (Ua) = [W(kR),ik;W (kR), —k;k;W (kR)] , (2.178)
and only renormalized bias functionals are defined for peaks:
cf(k) = (A1 + B1k?) | & (k1 k) = [A2 + By (k3 + k3) + Coky - ko + Dok?k3 + B (ki - k2)*| | (2.179)

where the exact coefficients are calculated by Vincent.

2.3.7 Multi-Point Propagator for Matter and Biased Tracers

The original RPT propagator was identified as one-point propagator, and it was extended to multi-point propagators. Here we consider
only one-component (density, not velocity) multi-point propagator for matter and biased object:

8"6m (k) 3 3m o3 —n [ Dinit n
2m)3730 63 (k — k) T (Ko - 1 — g (D) po ey
<66L<k1) . 66L(kn)> ( '/T) ( 1 ) ( 1 ) )7 m n D la;--a, Yai (;Llﬂg(’))

where the latter shows the relation to the original multi-point propagator. Furthermore, the renormalized bias ¢,, is the multi-point
popagators of biasing in Lagrangian space. Thus, we have in terms of the SPT kernels,

(n) S 1 d3ki dSk/ / ! / '
IV (k... ky) = ml ] @r)3 m ntm (K1, kn, Ky, kL) (OL(KY) - ou (kL)) 2.181)
m=0 :
and the resulting power spectrum is
d3k1 d3k ( : )
n=0

— G2(k, z)Pnn(k:) + Pmc<k, z),

where we can replace F' by K for the multi-point propagator for biased objects. The mode-coupling term must arise from the multi-
point propagator with n > 1, and the one-point nonlinear propagator G = I'. Note that as is above, the one-point (or any multi-point)
nonlinear propagator can be formally expressed in terms of the SPT kernels, but it cannot be solved analytically.

2.3.8 The Recursion Relation in Lagrangian Perturbation Theory

The recursion relation in SPT is well known, but LPT has no such, because even for the irrotational fluid, the LPT displacement field
has transverse component, starting at third order, which makes things complicated. However, the recursion relation for LPT kernel
can be derived by comparing to SPT at each order (they should be same when the density field is literally expanded).
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The density in the Eulerian space is written in terms of LPT displacement as
5(k,t) = / dPqe ™9 [em Y —1] =3 " D" ()6 (k) , 50 (k) = SPT™ | (2.183)

and this matching condition gives

; 1 5 2 1 1 1
Fi'(p1) = k-Spl (p), F3 (p1.p2) = k- S0 (P1.p2) + 3k Sl (p) k- S{ L1 (p2)
; 1
By (p1.p2ps) = k- S{r(pr.pa.pa) + 2k SELr(p1) k- Sl (p2) k- STy (o) (2.184)
1 n n
3 {k . S(L%T(pl) k- S(L%T(pz,pg) + two perms.} , S(Le)aT S( )+ S( ) (2.185)

where k = p;,... ,, and Sy, and St are LPT displacement kernels for longitudinal and transverse parts, respectively. Noting that

S(Tl) = Sg?) =0, S(Ln) = %S(Ln) ) k- S(Lne)aT(pla o, Pn) = k- S(Ln)(plv"' ,Pn) = S(Ln) ) (2.180)

1--n

one can derive the n-th longitudinal kernel from the lower order kernels and the n-th order SPT kernel, where S(L”) is the n-th order
scalar function.

The transverse kernel is a bit tricky to derive, while it is not much needed in most cases. Nevertheless, the irrotational condition
gives rise to the relation:

d d d d
0=Vyixv — 6”kd \Ilk,] gijk;qyl f\I/l’k = \I’i,n Enjk (\Ifl ‘If — \I/k’j> s (2187)

T dn Tdn dn

where the time derivative is w.r.t dn = dt/a? and the partial derivatives are with respect to the Lagrangian coordinates. This condition
can be expressed perturbatively as

n d d .
M= 3" e (dntlf,ﬁ,}—q/l(f;)mq/ﬁg) : SO = 3 e ot (2.188)

ptqg=n pF+q=n

and the solution is Ci(") = 0. Therefore, the nth order solution of the transverse kernel satisfies
d (4™ ® L o®) 4 (¢@ L g@
i (w ) - (\I:" \I:”) 7(‘“ \I:q) : 2.189
Eijk dn ( T ) erZq;ne e\ YL +¥rp Lidn \WL + ¥ Lk ( )

Furthermore, by denoting that the time evolution of the nth order displacement is o< 772" (= D), we can separate the time evolution of
the nth order displacement from its longitudinal and transverse part: \IIS.J”) (n,q) = L™ (q)n~2", and \Ilgf’ ) (n,q) = TM(q)n=2".
Then, we can evaluate the temporal derivatives and obtain

ny 1 2p n—
i) =5 > e L+ D L+T) (2.190)
0<p<n

e derive the solution

2.4 Redshift-Space Power Spectrum

The distance of objects in cosmology is estimated by measuring the redshift of such objects, and the redshift is affected not only by
the cosmological expansion, but also by the peculiar motion of objects. The power spectrum we measure is therefore affected by
peculiar motion, and it is called the redshift-space distortion. To separate quantities, those without redshift-space distortion are often
called real-space quantities.

The real-space position x is mapped in observation as the redshift-space position s as

s=x+22Ys, v=ai, (2.191)
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where we assumed that the line-of-sight direction is aligned with z-axis. The redshift-space distortion can be readily incorporated
into the Lagrangian picture:

z\Il

2 T = nHfB™ ) =™ 4opf(z. 82 o L =[5, + nfz5] LY

J
(2.192)

U ="+

and the resulting power spectrum at the one-loop level is
Py(k) = e K IR U008 | (1 4 £12)2 Py (k) + PS®(k) + (1+ fu)?[L+ f(f + 2]k PL(k)o? | (2.193)
where H? f?0% = o2 is the one-dimensional velocity dispersion.

2.4.1 Large-Scale Velocity Correlation

The velocity field is very difficult to measure in observation, but the velocity correlation is one of the basic statistics in cosmology.
The velocity correlation function is

Bk kik
Wij(r) = (vi@)o;(w + 1)) = / g ¢ TP TG = ()8 o+ [ () = V()] sy (2.194)
where z-direction is the radial direction and
dk J1(kr) dk . 271 (kr) d
Vo= =y, = [ R rPm I wy v = [ SRR [aer) - | = e ()
(2.195)
Finally, we have
A3k H2f2P(k dk
agD:/(%)S sz (k) /2 S H2f2P(k) (v(x) - v(x+7)) =T (r)+2¥,(r), (2.196)

and 02, = 02

1D = 393D-
_ Often in the redshift-space distortion literature the velocity is scaled with the conformal Hubble parameters © = v/H and
6 = 0/H, and the velocity power spectrum often mean P;. The velocity vector is

1 ~”Hf

V=—— Vg —2— ad=

5 Ve 27 da =i Hffé—HfVV‘Q& (2.197)
9E—V-U=Hf5=— , Py =H?f?P(k) . (2.198)

2.4.2 Gaussian Streaming Model

Fisher (1995): A popular streaming model (Peebles) is the convolution of the real-space correlation function with the relative velocity
probability distribution:

S(m,rﬂ):/dyfm e =y = L) =yl H=1, (2:199)

where y/r is the cosine angle along the line-of-sight direction and r is the redshift-space distance. The PDF is often assumed to be
an isotropic Gaussian. However, this streaming model is known to fail to recover the Kaiser formula (Hamilton) in the linear regime.
In fact, the PDF is not independent: Consider a vector n = (4, &', v, v.), where primes mean quantities at x’. By using the number
conservation, we have

14+ &(ro,7r) = /d47] dy(1+8)(1+ 8 Py(n) 6P (rr —y — vl +v,), (2.200)
where the PDF is a Gaussian
1 1

Pp=——— exp|—-nfC! > , vvh) = 6+ [W U (r)] 775 2.201
n (27)2\/detC p< oM n < > (r)di; [ () =W ( )] j ( )

the mean relative velocity above is a number weighted as (vi2(r)) = (v — v)(1 + 0)(1 4+ ¢')) = v12(r)F, and

3 / Ji(kr) s / ‘ 2j1(kr) . P /

V() = o [ dk PO T V() = 3= [ dk P(R) |jo(kr) = =22 o) = 55 | dk P(R).
(2.202)
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Using P,d*n = P,yd*n’, we change the variable 7 to 1)’ as

)
6 G Y\ 2 o\ 2
n - = =0 |, I%(r) = 2[6(0) £ £()] . A =2|o2 = (L) v+ (2) v |
V+ r r
Vo s
o_(r)
(2.203)
and the covariance matrix is then
1 —K
1 0 0 K1 1—k% (1) 0 l—mlf
0 1 —K 0 —1 0 2 o2y 0
C/: It — 2 , C/ _ 1;@’{2 1—k3 , 2.204
e 0 = 10 2 o 2209
—K 1
k1 0 1 i 0 0 ——
where
gy = ¥ 21200 y = ¥ 01200) (2.205)
r Iyo_ r I'_op

Therefore, the PDF in terms of new variable is

1 — k1 V)2 (0~ — kaVy)?

1 (o
P, = S Ve Ve + 2.206
" 2R — ) 21— k)12 eXp{ 2[** A B R gy H (2:200)

and the PDF becomes two independent Gaussians when k; < 1 and k2 < 1. Now noting that (1 4+ 0)(1+¢') = 1 + 104 +
(2462 —T'?6%)/4, we have

d 1 (re —y)? 1 - 1 - — )2
14+€(ry, ) :/%Uy(r)exp {—zw] x{1+4(ri —r3)+r+mﬁ - R [1— (Taz(f))” , (2207)

where d*n’ are integrated out. Finally, once the PDF is expanded to the linear order (lengthy), then it recovers the linear theory. One
missing point is that this derivation is based on Gaussianity, while the Kaiser formula is just linear, independent of its Gaussianity.

2.4.3 Complete Treatment of Redshift-space Distortion
Scoccimarro (2004): Starting from the basic relation, we have the conservation relation (1 + 6,)d®s = (1 + §)d®r and 6,(s) =
J71[1+ 6(r)] — 1 with the Jacobian J =1+ VA,

(2m)36P (k) + 6. (k) = / d3r 14 6(x)] e s=r4+A, A=V/H, (2.208)

3 . —ik-s __ 3 . V.V(r) } i(kp V/H+kr)
/d r(l+d6—J)e = /d r{é(r) HE) e ) (2.209)

where two expressions are quite common and largely equivalent. Since with xo = x; + r, we have

9 (k)

(2m)20P (k) + P.(k) = / dPr e kT <e*ikz[A<X2>*A<XI>] (14 0y,) (1+ 5x2)> , (2.210)

. . V.V V.V
P.(k _ dS —ikr —tk. [A(x2)—A(x1)] 5— 22 §— 22
09 = [ < HE ) " HE )

and by Fourier transforming back we have

1 +€Z<S) — /%Ij: /d3I' 6D(S$ _ .'I})éD(Sy _ y) <eikz(sz—z—[Ax2_Ax1]) (1 —+ (le) (1 + (5x2)> R (2211)

) /ngr /d3r 5 (5, — )57 (s, — ) <eikz(sz_z—[sz-AxJ) (5 _ Z(;/))x (5 - Z(:))x> :

We further define useful quantities:

1+5z(s):/‘;’j: /dz iks(s:=2) [1+§(r)]/\/l:/cgj:/dz eikz<8fz>zz/dz L+e@]P, (212
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where the pairwise velocity generating function M, the pairwise velocity probability distribution function P,

Z = [1 +€(I‘)] M(/CZ,I') = <€7ik)z[Ax27AX1] (]_ + 5x1) (]_ + 5x2)> s P(Sz — Z,I‘) _ / koz gikz(szfz)/\/l(kz’r) .
™
(2.213)
The pairwise velocity moments are defined as
oM 9 9’ M
= = == . 2.214
wo=(G), o= (5E),, 22
In summary, we have
£.(s) = / % eth=(s==2) [z _ 1] | P.(k) = / dre Tz 1], (2.215)
m
and for a Gaussian distribution Z can be exactly solved.
2.4.4 Improved Model of the Redshift-Space Distortion
The exact redshift-space power spectrum is
P, (k) = /d3x e ik <e—“w fAus {5(1‘) + fVZuZ(r)} {5(1«’) + fVZuZ(r’)}> , (2.216)
e = =22 iy Ok Vou, = 4265 . 2.217)
Hf k-’

Note that no dynamical information for velocity and density fields, i.e., Euler equation and/or continuity equation, is invoked in
deriving this equation. The above equation is in the form of

Py(k,p) = / d*x e X (N A Ay Ag) J1=—ikpf, (2218)

A = u,(r) —uy(r), As(r) =0+ fV.u., As(r)y =0+ fV,u, . (2.219)

Now consider an arbitrary vector j = (j1, j2, j3), taking the derivative twice with respect to jo and js, and setting jo = j3 = 0, we
derive

<ej'A> = exp {(ej'A>C} — <ej1A1A2> = <ej1A1A2>C exp <ej1A1>C , (2.220)
<ej1A1A2A3> = exp {<6j1A1>c} [(ej1A1A2A3>C + <ej1A1A2>c<ej1A1A3>c] , (2.221)

and therefore, the redshift-space power spectrum is
P (k, 1) = / d*x e 8% exp {(M) o} [( M ApAg) e + (€ Ag) (e 43). ] (2.222)

By comparing to the phenomenolgoical models that incorporate the FoG effect, we deduce that in those models 1) the ensemble
average product is zero by setting j; = 0, while keeping the exponential prefactor

(7141 Ag) o (7141 Ag) e ~ (A)(As)e =0, (2.223)
2) the exponential prefactor becomes a Gaussian

Al = U/Z(r) — Uz (I'/) ) jl = _lk/’(‘f ’ (2224)
exp {<6j1A1>C} = exp [Z %

i.e., the spatial correlation is ignored and other higher momements are ignored. Based on this observation, they argue that the Gaussian
damping term is pretty accurate (in the sense, they get resummed), so we keep the second approximation, but make a perturbative
correction to the first approximation. Up to the second order in j;, we have

(A7), — e~ rfou)® ATy ~ 202

v

n=2, (2.225)

<€j1A1A2A3>C + <ej1A1A2>c<ele1A3>c ~  (AgA3) + j1(A1A2A3),
o1 .
+ﬁ{§ (AT A5A3). + <A1A2>C<A1A3>c} + 053, (2.226)
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and the term <A%A2A3>c turns out to be higher order (not clear, doesn’t matter). Therefore, we have with o, fitting parameter

P.(k,u) = e~ F1I0)" [Pys(k) — 2f 12 Psg (k) + f2u* Poo (k) + A(k, ) + B(k, p)] (2.227)

where § = —V - v/(Hf), two additional corrections are

. Cikex d? .
Alk,p) = / dx =X (Ay Ay As)e = (ki f) / 4 % 1B,(a,k—q,~k) — B,(a,k,~k —q)} ,

(2m)? ¢
Bl = 3 [ x> ) i = (uf? [ 5% FlaFk-a).
Flq) = Z—Z [Pgo(@ + fgé Peo(Q)} : Oy (01 + [130ks) (S5 + Fri301cs)) = (27)°67 (Kia3) Bo (ki ko, ks) -

The bispectrum B, is also computed to the 1-loop level, and the extension of the above with linear bias is simple.

2.4.5 Summary of Other Phenomenoligical Models of FoG
Some of the popoular models are Eq. (2.227) above, and

_ [ (4 fu?)?Ps(k) linear ,
Folk4) = Droalbufo) Pk, 1) "= { Pys(k) +2f 12 Psg (k) + f2ut Pag(k)  nonlinear , (222%)

where D(z) = exp[—2?] for Gaussian, D = 1/(1 + 22) for Lorentzian, and some variation D = 1/(1 + 22/2)2 (Cole et al., 1995).
The nonlinear model is Scoccimarro (2004).

o LPT at the one-loop level in Eq. (2.193) is
Py(k) = e F U4 (14 112)2 Py (k) + PGe (k) + (14 fu)[L+ £(F + 2p2]R? Pu(k)o? | | (2.229)

where H? f?0% = o7, is the one-dimensional velocity dispersion, but it is often taken as a free parameter.

2.5 Effective Field Theory

2.5.1 Basic Formalsim

Let f,(x, p) be the single particle phase space density defined such that f,,(x, p) d*x d®p is the probability of particle n occupying
an infinitesimal phase space element. For a point particle, the phase space density is

fn(x,p) = 63(x — x,) 6% (p —mavy,) (2.230)

(where both x and p are co-moving). By summing over n, we define the total phase space density f, mass density p, momentum
density 7*, kinetic-tensor o*/ as

Fp) = Doahlx ) shp - mava). o) =ma [ & fxp) = Do maobx - xa).
mi(x) = /d3ppfxp Zma Lo (x —X,) Uij(x):mflafs/ddpp P f(x,p) = Zma vl vl 6% (x — x,,)

The Newtonian potential is sensitive to an infrared quadratic divergence in an infinite homogeneous universe. To isolate this diver-
gence we introduce an exponential infrared regulator with cutoff 1 (a mass term) and will take the ;¢ — 0 limit whenever it is allowed.
The Newtonian potential ¢ is

bu(x) = —Ga? [drx L) e ME el (2.231)
|x — x/| alx — Xy
o _ Ga? 3 ,p( ') — Pb o—hlx—x| _ 47rGa pb 9 9
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The k-space version of the Newtonian potential is

4rmG

Pn(k) = W)

=26tk ‘Mia P am)ah(k) . V26 = 4nGa(p(x,t) = po(t)) ,  (2233)

where the final term evidently subtracts out the zero-mode. The collisionless Boltzmann equation becomes in the Newtonian limit:

0w 4 _Dbf_of, » 0f 9 Ofn
( 8#+F5pp8#)f”_0_>o_Dt_6t ma? ox "2 ox T op

(2.234)

where the final term now involves a double summation over 72 and n.
Let us define the following Gaussian smoothing function

Wa(x) = (\/%)3 exp (—AZXQ> : Wi (k) = exp (—;“;) : /d3xW(x) —1. (2.235)

Of course our results will not depend on the choice of smoothing function, but the Gaussian is chosen for convenience. For certain
observables O(x), we will define the smoothed value by the convolution

O,(x) = [0]a(x) = / d*x' Wy (x — x)O(xX') . (2.236)

The smoothed versions of the phase space density f;, mass density p;, momentum density 7}, stress-tensor ol , derivative of Newto-
nian potential 0;¢; are

filx,p) = ZWA (X —%,)05(p —mav,), p(x) = Zma_?’ Wa(x —xp), (2.237)

i (x) Z ma vl Wa(x —x,), Ulij (x) = Z ma3 vl vl Wa(x —x,), (2.238)

where the 1-subscript indicates that these only depend on the /ong modes. Similarly, the smoothed version of the Newtonian potential

ér is

mG | 477Ga Db
n = - Erf n Blx—%n] kil 2239
P1,n () ] r { 7 ] e , Zcbz ( )
We now write down the smoothed version of the Boltzmann equation by multiplying it by W and integrating over space
Df of . P 8fl / 3. O, dfn
~|Dt], ot Tox d”x" Wi ( 2.240
{Dt}l\ ot +ma2 T;L x Wa(x )5' (x') - 6p(x ,P) ( )

where we applied the smoothing kernel and integrated (integration by part is needed for the spatial derivative). The zeroth moment
gives the continuity equation:
m(%) 2 v Walx —xn)

1 ) )
n+3Hp+ =9;(prv)) =0, v (x) = = . 2.241
i Pt (p1vy) 1 (%) () S Wa(x — %) ( )

The first moment gives the Euler equation:

o | 1 y A 3
o + Hol + gv{ajv; + -0 = fa—plaj (7], =-J, [T9]s = k) + @), (2.242)

where we defined the source term, which is explicitly

i ¥ i, 7 mQG(x:z — x%) —p|xn —x5
apyJi = 0;(0) — projv]) + Y pn Oidaly — p10icr s [pn Oidnl s = m(l + i, — x| )P W (x = x)
—r n n
(2.243)
which requires one to perform a double summation over n and 7 (which can be computationally expensive). Furthermore, we split

the effective-stress tensor into two, where mlij is a type of kinetic dispersion and @, is a type of gravitational dispersion:

kk §ij i i
i i wited — 2w 8,0180k008 — 20i10;¢
k) =0 = proju] o == 871G a? R l87rGa2 ) (2249
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where the former describes the dispersion around the mean velocity and the latter describes the higher gravitational multipoles, and
we have defined

w)? (x) = /d?’x’ Wa(x —x) [81/¢( Z Oy (X") 0jr pn(X') ] . (2.245)

Note that we have subtracted out the self term in w ', and used V2¢ = 4nGa®(p — py) and V3¢, = 47Ga2(p; — py) to express D; in
terms of ¢ and ¢;. In the limit in which there are no short modes, it is simple to see from the definition of x; and ®; that they vanish
in this limit.

2.5.2 Effective Stress Tensor

The derivation of the effective stress-tensor is as follows. We define the short modes to be

7y = [ = ) — o)1 6xp) = X T 0k o)) (0] o (k) B x - %,

n

¢s,n = (bn - ¢l,n 5 az¢s = Z 8i¢s,n 3 wzj = 6z¢5 8jqbs - Z 8i¢s,n 6j@bs,n B plz(x) = mavf(x) B

o = [agj]A + [pmvalj} N + [vf’(wj — pmt]) + ] (n = pmvli)} o o # g — gl (2.246)
Therefore, we have

U

R

i J
o]+ 2282 o (1Y,

Ky A2 A4
Kk A 6% — 2[w) O Ok P10y Ok 910 — 20,,0;10,0; ¢ 1
(I)UZ—[wS]A s JA mUkPIUnUEP| mUi PIUMU; Pl o — 2.247
l stGaz $7G a?A? T\ ) (2247
where some terms are ignored and expanded (not really derived). Now, we re-arrange the effective stress-tensor as
ij ij ij _ [ij ij19 ij ij [w§*]a6% — 2[wd]s
[]y = &+ =[]+ [ = od]a - 871G a? ’ (2.248)
102 plakvfakvl Om Ok d10m 8k¢15” — 20, 0;$10m 3J(;51 1
* = — 2.24
7] A $7G A2 O\ ) (2.249)
and by taking the derivative J; this leading piece becomes
aj [ng]A = aj [Uéj}A + [P381¢3]A 5 ,09 zd)s A= Z ma~? 1¢~; n Xn)WA( Xn) - [plai(bs]/\ y (2.250)
n#n
where we have [0,0;¢s]a = — 51z 010;0°¢; + -+ - and
3 m2G (x, — z5)" Alx, —xa|] = 47|x, — X5
;Lma 1(,259 A Xn)WA( ) = 7; a4 m <Erfc |: \/§ :| + A2 WA(Xn - Xn)> WA(X — Xn) .
(2.251)

It is of some interest to compute the trace of the stress-tensor, so-called mechanical pressure. This includes the gravitational piece

wpk Or10k 1

Pit — _ 2.252
! 871G a? 8nGa? ’ (2.252)
where the first term is approximately given by
_ lkk ~ }/d?)X/WA(X—XI) Z(Spn n } (V¢)2:—¢V2¢+1V2(¢2)
87 G a? 2 2

1 Gm? 1 4TrGmp
- _z T alxa—xa] _ - TPy _
= - n%én I Xﬁ|e Wa(x —xp) + 5 gn a2 Wa(x — x,) ,

and we dropped all terms that are suppressed by the ratio of low k-modes to high k-modes. Therefore, the trace of the stress-tensor is
roughly

[T]Az/d?’X/WA(X—X/)[p(X/)( S+ 30u(x)) - Zpsn 6u(x)] . (2253)
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The background pressure has the zero mode contribution

o = 5 ([7]a) , (2.254)

where we have ignored a correction from the bulk viscosity. There are also stochastic fluctuations to the pressure. Now, since
the density field p(x) can be arbitrarily large for dense objects on small scales, it suggests that each of the contributions to the
renormalized pressure, both the kinetic and the gravitational, can be quite large. However, for virialized structures, these two terms
cancel each other. Hence the only significant contribution to the integral comes from modes of order k ~ ky; which have yet to
virialize.

The effective stress-tensor [Tij ]a in the Euler equation (first moment) comes from smoothing over the short modes (and the
second-moment) and therefore is sourced by the short modes. When it comes to n-point correlation functions, coupling between
long modes is connected to the non-linear terms in the continuity and Euler equations, while coupling between long and short
modes is connected to the stress-tensor, which generates non-zero correlation functions ([7%]5 ;) and ([7%]5 vF). In order to make
further progress, we write the stress-tensor as an expansion in terms of the long fields, whose coefficients are determined by various
correlation functions. This will involves a type of pressure perturbation term o 6" &;, a shear viscosity term o< 87v} + 9'v] —
%5” 6kvlk, and a bulk viscosity term o< §% Oy, vlk. Demanding rotational symmetry, we write a type of effective field theory expansion
for the stress-tensor as

3¢ 2

ij
. + Ari (2.255)

(791 = oo 269 (v 60) — 225 oo (07 Forf — 2 akv;v)

where  would correspond to the ratio of specific heats in an ordinary fluid (e.g., v = 5/3 for an ideal monatonic gas) but here it just
parameterizes the background pressure term, ¢, is a sound speed, and cg, , cp, are viscosity coefficients with units of speed. Note
that cg, csy, Cpy are allowed to depend on time, but not space. Our fluid coefficients are related to the conventional fluid quantities:
background pressure pj, pressure perturbation dp, shear viscosity 7, and bulk viscosity ¢ by

C?Pb

3puc?
Py = —— , 5p = 2pubi —

2
PbChy

= = —2 2.256

N n 10 ¢ ( )

H

In addition to those, there is an entire tower of higher order corrections carrying the appropriate rotational symmetry, guaranteed

to exist by the principles of effective field theory. These will be parametrically suppressed at low wave number k compared to the

non-linear wavenumber k1. Here A7% represents stochastic fluctuations due to fluctuations in the short modes, with (A7%7) = 0.
For later convenience, let’s introduce various quantities:

. 3, iy c? 9 v} ki v}
o= — = . ; = — = — 2.2
aJl pba [ ] C 8 6[ + 4 S,Ua C"') ( 4 +va) 81@[ 5 @l Ha 5 ("')l Ha 5 ( 57)
2
a? AR = ;aka i [TY] = adkJ] = 2 0,06 +2 2, 0x0,07" + (CZ’ —|—c§v) 0,0;0y , (2.258)
b
1 g ) 1 ij
a’A; = ﬁaiaj [7Y] = adiJf = 2 0%6 + (2, + ¢3,)0°O;,  a’B = — o (a 9 — 532> (Y], =ci, 0%0y.
With these definitions, the EFT parameters are
02 _ PA@(a:)GQP(;@( PA5($>82P@@< ) 02 _ PA5($)82P5@(.’L‘)—PA@($)82P§5(.%‘)
5 (02Pso(x))2/a?2 — 82Ps5(x) 0?Poo(x) /a2’ ¥ (0%2Pse(1))2/a? — 02Pss(x) 92Poe(x)/a?’
4 Pyri ki( ) PA@( ) PB@(J?)
2 Ak © 2 _ 2 2 ! !
Csv 3 82P@m ok (LC)/G,Q agp@@( )/CL2 82P@@((E)/CL2 ’ Cy Csv + Chy » AB(x) < (X +x ) (X )> ’
where we defined various correlation function P4 (x). Similarly, in Fourier space, we have
2 _ _ Paelk) Pse(k) — Pas(k) Poe(k) 2 Pas(k) Bse(k) — Pae(k) Pss(k)
s —k2P§@(k)2/a2+/€2P55( )P@@( )/a2 ’ v —k2P5@(k:)2/a2+k2P55( )P@@(k)/GQ ’
2 - 4 Parigri(k) — Pae(k) __ Ppe(k)
v 3 —]432P@m @ki(k‘)/aQ + k‘QP@@(k‘)/az —k‘ZP@@(k‘)/a2 '
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Let us now compare the relative size of the terms that appear in the Euler equation. We use the Hubble friction term Hv} as the
quantity to compare to.

Pressure, Viscosity A kdifa ko’ 2o P
~ ~ C —_—
Hubble Friction Hu, v\ Ha 1052 T
non-linear Velocity kv?/a _5( ck 2
~ ~ 10 — ] ~4. 2.259
Hubble Friction Hu; Ha ! ( )

2.5.3 One-Loop Power Spectrum

In the absence of vorticity and ignoring stochastic fluctuation A7%, we can solve the continuity equation and the Euler equation

32

* 0 i j ] 1 1 sV i 4cv+csv ) P = ij
0] + Hoj + v] 0] + ~0igy = —Eci 0ibu+ s O*vj + fu1728 o] — AT, AT =p,l0;ATY Ja, (2.260)
using the standard procedure:
s 3K kK k2K - (k —K)
— = — k, k)6 (k — K)o, (K k. k)= kk)=—>+——" 2
o = =[G K)nk—1000) . alak) = fo . Bk) = G
3 1./ 2 2
‘fl—elwrw + SH Q6 = —/(‘;:) Bk, K0 (k — K0, (k') + 2k%6; — ok ! (2.261)

The time dependence is removed by assuming the EdS-like behavior, but we have to consider the additional EFT terms, which are
approximated as

c? k2 c2 k?
Aa,A)=acy(A), c(a,A)=acty(A), Csolk)= 20—, Cuolk) =205, (2.262)
Hg Hg
where the A dependence is implied.
For n > 1 we find the following set of relationships between the fields at different orders
An(k) = nd,(k)—0,(k), B, (k) = 30,(k) — (2n + 1)0,,(k) — 2C5 0(k)0p—2(k) — 2Cy 0(k)0n—2(k) ,
Bry [ =
An(k) = / (277)13 / Ak 6% (k1 + ko — K)a(k, k1) Y O (K1)0n—m(k2) |
m=1
dSkl . n—1
Bu(k) = - ) APk 63 (k1 + ko — k)28(k, k1) m2;19771(k1)0n_m(k2) ,
and then
1
k) = ———|(2 DA, (k) — Bp(k) —2 —ao(k)—2 _o(k
) = gy L2+ D AR Ball) = 2C0(k)na(k) = 2C00(k)on2(k)|
— - g 3, 53
= Z @ d°q;j 0p(qi +---+4q; —k)F, ;(qu,...,q;5) 01(ar) ... d1(q; ) , (2.263)
=1
1
nl) = GremTD [340(K) = 0B, (K) = 2nC. 0 (k)3 -2(K) = 2nCi0 (k)02 (k)|
_ 5 [P 3, 53 . _ . .
= > TR B oh(qr+ -+ q; —K)Gnj(ar, ..., q;)di(qr) ... 01(q;) , (2.264)
j=1
where the kernels are
n—1
Fn,n(‘lla--an) = 'm,zzl % [(2n+ l)a(k, kl)anm,nfm(qufly---,qn) +2/8(k11k2)Gn7m,n7m(Qm+la---7Q7t)] )

n—1

Gmm(q17--~:qm)

Grn(@l,...,an) = Zmom AL -0 Am )
ndis- dn) > (2n+3)(n—1)
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and also £, 1 = G,,; = 0forneven (G, =nF,1)and

ﬁ —2(Cs(k) + (m —2)Cy(k))

Fualk) = @m+3)(m—1)

for n odd (2.265)

Gni(k) = n ﬁ _2(05'((221(3’;‘(%2_)%’0(]{)), for n odd . (2.266)

At the one-loop order, we have the usual SPT kernels FQ(SQ) , Ggsg (Fp,1 = G217 =0), and

1
F33(q1,92,93) = T [704(1(, d1)F22(92,93) +28(q1,92 + q3)G2,2(qaz2, a3) + (Ta(k, q1 + q2) + 26(q1 + q2, QS)GQ,Q(QLCH)} )
1
G3.3(q1,92,93) = T [304(1(, q1)F22(q2,93) +68(q1, 92 + q3)G2,2(qaz2, a3) + (3a(k,q1 + q2) + 66(q1 + gz, q3)G2,2(q1,q2)} ;
1 1
Fya(k) = _5(05,0(1@ + Cuo(k), Gza(k)= —g(cs,o(k) + Cyo(k)) . (2.267)

The final result for P;3 and P> have two contributions: the contributions from IR modes and the contribution from UV modes,
which we write in the following obvious notation

Pi3(k) = Pisrr(k,A) + Pispv(k,A), Poy(k) = Pag rr(k,A) + Paoyv (K, A) . (2.268)
The IR contribution is the usual SPT but with the cutoff
A ddq

(27)?

Pi31r(k,A) = 3P11(k)/ Fg(sg) (a, —a,k)Pi1(q)

1 k3 Ak 12 2 4, 32 \3m2 Lt
- 5044;21311("“)/0 dr Fua (o) (ﬂ_158+1oor —At T =D +2)ln’1r> ’
A 33
d’q

Pk d) = 2 [ 2 [Fak-a) Pul@Pi(k—a)

1 k3 [A/E 1 e
= / dr/ dz Py1 (k)P (kvV/1+ 12 — 2r) (3r + 7o — 10r2?) |
0 —1

98 472 (1472 —2rz)?

and the UV contributions are

(2 o(A) + 2 o(A)K?
Pisyv(k,A) = F31(k,A)Pii(k) = — o2 Piy(k), Poouv(k,A) = AP (k,A), (2.269)
0

where P is set by the (A dependent) sound speed and viscosity, and A P, is set by the stochastic fluctuations (ignored later). In
order to extract the A dependence of Py3(k, A) we take the large 7 limit inside the integrand (k < A1 < A)

488 1 k2 A
Pyi(k) | dqPii(q), (2.270)

Pigrr(k, A) = Pigar(k, M) — — 20—
13 13 1 5 50ddn2l 1t N

and this A-dependence should be cancelled by the UV piece with the same k-dependence as

488 1 2
o)+ o) = (5 18 [ dnPu(@) + (o) + glo0) e
The constant contributions are determined by explicit matching to numerical simulations. This structure is sort of expected as follows.
For the cutoff in the perturbative regime (A < ky)), the A dependence of the fluid parameters is adequately described by the linear
theory. This allows us to estimate the value of the fluid parameters c2 and ¢? and their time dependence as a function of the linear
power spectrum. The sound speed is roughly given by the velocity dispersion, so in linear theory we estimate the sound speed by
an integral over the velocity dispersion of the short modes. The linear theory is not applicable at very high %, so we shall include a

constant correction as follows
(a,\) = a/ dlng A%(q) + ¢*(a, ), (2.272)
A
where A? is the velocity dispersion, « is an O(1) constant of proportionality (which is fixed as above), since the sound speed arises

from integrating out the short modes. In the A — oo limit, which we shall eventually take once we cancel the A dependence, we find
that ¢2(A) is non-zero (due to the UV dependence), which we account for with the ¢2(co) constant correction.
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For viscous fluids there is a famous dimensionless number which captures its tendency for laminar or turbulent flow; the Reynolds
number. The Reynolds number is defined as

2.2
_pvl JHuL Ha" g, (2.273)

R 2 Tzt
/}7 SvU Sv

where 7) is shear viscosity, p is density, v is a characteristic velocity, and L is a characteristic length scale. The Reynolds number is
not very large, and the system is therefore not turbulent. Furthermore, if we were to estimate the viscosity by Hubble friction, then we
would have R, ~ § and so the Reynolds number would be even smaller in the linear or weakly non-linear regime. For cosmological
parameters p, ~ 3 x 10730 [g/em3], H = 70 [km/s/Mpc], and if we take a plausible value for the shear viscosity of ¢, ~ 2x 10772,

then the viscosity coefficient is found to be 7 ~ 20 Pa s which is perhaps surprisingly not too far from unity in SI units. (For instance,
it is somewhat similar to the viscosity of some everyday items, such as chocolate syrup.)
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