
3 Nonlinear Relativistic Dynamics: ADM For-
malism and its Cosmological Applications

3.1 Arnowitt-Deser-Misner (ADM) Formalism
3.1.1 Basics
The ADM (Arnowitt et al., 1962) equations are based on splitting the spacetime into the spatial and the temporal parts using a normal
vector field nµ and a time-like vector tµ = (1, 0, 0, 0) defined by the coordinate system (i.e., coordinate observer). It is a fully

nonlinear description of GR. The metric is written as

ds2 = gµ⌫dx
µdx⌫ = �N2dt2 + h↵�(dx

↵ +N↵dt)(dx� +N�dt) (3.1)
= (N↵N↵ �N2)dt2 + 2N↵dx

↵dt+ h↵�dx
↵dx� ,

and the individual components are

g00 =: �N2 +N↵N↵ , g0↵ =: N↵ , g↵� =: h↵� , N↵ := h↵�N� , (3.2)

g00 = � 1

N2
, g0↵ =

N↵

N2
, g↵� = h↵� � N↵N�

N2
, (3.3)

where N↵ is based on h↵� as the metric and h↵� is an inverse metric of h↵� . In fact, the ADM metric can be derived by introducing
a normal vector nµ, or a vector normal to a hypersurface dxµ

3 :

nµ =: (�N, 0) , dxµ

3 = (0, dx↵) , 0 = nµdx
µ

3 . (3.4)

The lapse function N represents the alignment of the normal vector and a time coordinate direction dtµ = (dt, 0):

d⌧ = gµ⌫n
µdt⌫ = nµdt

µ = �Ndt . (3.5)

Similarly, wecan define a spatial lapse N↵ in terms of the alignment to a hypersurface:

ds3 = gµ⌫dt
µdx⌫

3 = g0↵dt dx
↵ =: N↵dt dx

↵ . (3.6)

Given that the normal vector is timelike, we recover the metric:

n0 =: �N, n↵ ⌘ 0 , n0 =
1

N
, n↵ = � 1

N
N↵ , h↵� = Hµ

↵
H⌫

�
gµ⌫ = g↵� , (3.7)

where
Hµ⌫ := gµ⌫ + nµn⌫ , (3.8)

is the projection tensor. The 3-metric h↵� is in fact the induced 3-metric on the hypersurface.
The fluid quantities in the ADM formalism are the energy density E, the momentum flux J↵, the stress tensor S↵� (its trace S

and traceless part S̄↵�), and they are what an observer flowing with the normal vector nµ (or normal observer) would measure:

E = nµn⌫T
µ⌫ = N2T 00 , J↵ = �nµT

µ

↵
= NT 0

↵
, S↵� = T↵� , (3.9)

S := h↵�S↵� , S̄↵� := S↵� � 1

3
h↵�S , Tµ⌫ = Enµn⌫ +

1

3
SHµ⌫ + Jµn⌫ + J⌫nµ + S̄µ⌫ ,

where J↵ and S↵� are based on h↵� . The ADM formulation is based on the normal observer uµ = nµ , which is defined in relation
to metric, completely independent of fluid components with different velocities uµ

(i). Hence in the multi-component situation, e.g.,

Etot =
X

i

E(i) = nµn⌫

X

i

Tµ⌫

(i) . (3.10)
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Connection and Curvature

The extrinsic curvature tensor (of 3-geometry in 4-D spacetime) is introduced as

K↵� :=
1

2N
(N↵:� +N�:↵ � h↵�,0) = �n↵;� = �N�0

↵�
, K := h↵�K↵� , (3.11)

K↵� = h↵�h��K�� =
1

2N

⇣
N↵:� +N�:↵ + h↵�

,0

⌘
, K̄↵� := K↵� � 1

3
h↵�K , (3.12)

where K↵� is based on h↵� and a colon ‘:’ denotes a covariant derivative based on h↵� . The full 4D connections become:

�0
00 =

1

N

�
N,0 +N,↵N

↵ �K↵�N
↵N�

�
, �0

0↵ =
1

N

�
N,↵ �K↵�N

�
�
, �0

↵�
= � 1

N
K↵� ,

�↵

00 =
1

N
N↵

�
�N,0 �N,�N

� +K��N
�N�

�
+NN ,↵ +N↵

,0 � 2NK↵�N� +N↵:�N� ,

�↵

0� = � 1

N
N,�N

↵ �NK↵

�
+N↵

:� +
1

N
N↵N�K�� , �↵

��
= �(h)↵

��
+

1

N
N↵K�� , (3.13)

where �(h)↵
��

is the 3D connection based on h↵� as the metric:

�(h)↵
��

:=
1

2
h↵� (h��,� + h��,� � h��,�) . (3.14)

In the same way, the intrinsic curvatures (of 3-geometry) are based on h↵� as the metric:

R(h)↵
���

= �(h)↵
��,�

� �(h)↵
��,�

+ �(h)✏
��
�(h)↵

�✏
� �(h)✏

��
�(h)↵

�✏
, (3.15)

R(h)
↵�

= R(h)�
↵��

, R(h) = h↵�R(h)
↵�

, R̄(h)
↵�

:= R(h)
↵�

� 1

3
h↵�R

(h) . (3.16)

The Gauss-Codazzi equation relates the geometric quantities of a 3-hypersurface to the 4D intrinsic curvature tensor as

R̃ = R(h) +K↵�K↵� +K2 +
2

N
(�K,0 +K,↵N

↵ �N :↵
↵
) . (3.17)

They are fully nonlinear equations.

• Background FRW Metric.— In a homogeneous and isotropic universe, we derive

h↵� = a2ḡ↵� , K↵� = �H h↵� , K = �3H , R(h) = R(3)
↵�

= 2K̂ḡ↵� , a2R(h) = R(3) = 6K̂ ,
(3.18)

where K̂ = 0,±1 is the normalized spatial curvature. These are curvatures of 3D space.

• Notation convention.— In the ADM formalism, the spacetime coordinate is simply (t, x↵). When applied to the FLRW universe,
the zeroth time coordinate can be the cosmic time dt = a d⌘, but in that approach one needs conversion to compare with quantities
derived in the usual perturbation analysis, where 0-th component is the conformal time. Another approach is to put dt = ad⌘
in Eq. (3.2), but the metric components (e.g., g̃00) carry not only the ADM variables, but also the expansion factor a. The other
approach we adopt here is that the zeroth time component in the ADM formalism is simply considered as the conformal time ⌘, in
which easy comparison can be made. Last, one has to be careful in lowering and raising indicies in the ADM formalism, as they are
all based on h↵� = a2(ḡ↵� + 2C↵�). Note, however, it is quite often the case in literature that the 0-th component is a proper time.

When proper time coordinate (with carat below) is used for 0-th component instead of conformal time:

N = aN̂ , N↵ = aN̂↵ , N↵ = aN̂↵ , h↵� = ĥ↵� , K↵� = K̂↵� ,
@

@t
=

1

a

@

@⌧
,

(3.19)
and the Christoffel symbols are related as

�⌘

⌘⌘
= H+ a�t

tt
, �⌘

⌘↵
= �t

t↵
, �⌘

↵�
=

1

a
�t

↵�
, �↵

⌘⌘
= a2�↵

tt
, �↵

⌘�
= a�↵

t�
, (3.20)

and of course the expressions for spatial quantities like R(h) and 4D quantities R remain unchanged. Note that when written in terms
of ADM quantities, their functional form remains unchanged regardless whether the time coordinate is dt or d⌘.
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3.1.2 Hamiltonian Approach
• see CPT.pdf for details

The Hamiltonian formalism treats qa and q̇a of the Lagrangian on a more symmetric footing with the canonical momentum:

pa :=
@L

@q̇a
, H(qa, pa, t) ⌘ paq̇a � L(qa, q̇a, t) . (3.21)

This way, instead of second-order differential equations, it deals with first-order differential equations. This mathematical trick to
replace one independent variable q̇a with another independent variable pa is called the Legendre transformation:

ṗa =
d

dt

✓
@L

@q̇a

◆
= �@H

@qa
, q̇a =

@H

@pa
, �@L

@t
=

@H

@t
=

dH

dt
, (3.22)

where in the first equation we used the Euler-Lagrange equation

d

dt

✓
@L

@q̇

◆
� @L

@q
= 0 . (3.23)

If the Hamiltonian does not explicitly depend on time, it is a constant of motion.
If the Lagrangian has q̈, it is not in a canonical form. One can introduce ṗq̈ term, in addition to pq̇ term in the canonical Hamil-

tonian approach, but another variable is often introduced to remove q̈ terms. In general, the Hamiltonian approach is applied to
canonical systems.

• Application to GR.— In general relativity a Lagrangian formulation is spacetime covariant: An action is specified on a spacetime
manifold. However, a Hamiltonian formulation requires a breakup of spacetime into space and time. The first step is to choose a
time-like vector tµ and its hypersurface ⌃t. In the ADM formalism the Ricci scalar is

R = 2 (Gµ⌫ �Rµ⌫)n
µn⌫ . (3.24)

The first term can be computed by using the Gauss-Codazzi equation as

Gµ⌫n
µn⌫ =

1

2

⇣
R(h) �Kµ⌫K

µ⌫ +K2
⌘

, (3.25)

and the second term is

Rµ⌫n
µn⌫ = R⇢

µ⇢⌫
nµn⌫ = K2 �Kµ⌫K

µ⌫ �rµ(n
µr⌫n

⌫) +r⌫(n
µrµn

⌫) , (3.26)

where we used the definition of the Riemann tensor in terms of covariant derivatives (Wald E.2.28). Therefore, the Ricci scalar is

R = R(h) +K↵�K
↵� �K2 + 2 [rµ(n

µr⌫n
⌫)�r⌫(n

µrµn
⌫)] , (3.27)

where the last two divergent terms will be boundary terms and hence discared. So the Einstein-Hilbert action is now

Lgrav =

p
�g R

16⇡G
=

N
p
h

16⇡G

h
R(h) +K↵�K

↵� �K2
i
=

p
h

16⇡G


NR(h) +

E↵�E↵� � E2

N

�
,

p
�g = N

p
h , (3.28)

and the extrinsic curvature is
K↵� =

1

2N
(N↵:� +N�:↵ � h↵�,0) = �n↵;� =: �E↵�

N
, (3.29)

where E↵� is independent of N . The canonical variables are N , N↵, and h↵� , but since the action is independent of Ṅ or Ṅ↵, they
are not dynamical variables.

The equation of motion in the Lagrangian formalism is with respect to gµ⌫ (rather than N , N↵, and h↵�), and this yields the
Einstein equation. Here, gµ⌫ and @gµ⌫ are independent in the Lagrangian formalism. In the Hamiltonian formalism, we define the
canonical conjugate momentum

⇡↵� :=
�L

�(h↵�,0)
=

p
h

16⇡G

⇥
h↵�K �K↵�

⇤
=

p
h

16⇡GN

⇥
E↵� � h↵�E

⇤
, (3.30)
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in addition to ⇡N = ⇡↵ = 0 for N and N↵. Now the Hamiltonian needs to be written in terms of the canonical variables. Using

⇡ := h↵�⇡
↵� = �

p
h E

8⇡GN
, E↵� =

8⇡GNp
h

(2⇡↵� � ⇡ h↵�) ,

p
h

16⇡GN

✓
E↵�E↵� � E2

N

◆
=

16⇡GNp
h

✓
⇡↵�⇡

↵� � 1

2
⇡2

◆
,

(3.31)
and also noting from the definition of E↵�

ḣ↵� = 2E↵� + 2N(↵:�) =
16⇡GNp

h
(2⇡↵� � ⇡h↵�) + 2N(↵:�) , (3.32)

the Hamiltonian is then

Hgrav := ⇡↵� ḣ↵� � Lgrav = ⇡↵� ḣ↵� �
p
hNR(h)

16⇡G
� 16⇡GNp

h

✓
⇡↵�⇡↵� � 1

2
⇡2

◆
(3.33)

= N
p
h


� R(h)

16⇡G
+

16⇡G

h

✓
⇡↵�⇡↵� � 1

2
⇡2

◆�
� 2N�⇡

↵�
:↵ + 2

�
N�⇡

↵�
�
:↵

=: NHN +N↵H
↵ ,

where the last two terms come from ḣ↵�

N(↵:�)⇡
↵� = N↵,�⇡

↵� � �(h)�
↵�

N�⇡
↵� =

�
N↵⇡

↵�
�
:�
�N↵⇡

↵�
:� , (3.34)

and the last term is a spatial boundary term that will be discarded. Therefore, we have only two terms that are linear in the lapse and
the shift, defining the constraint equations

HN :=
p
h


� R(h)

16⇡G
+

16⇡G

h

✓
⇡↵�⇡↵� � 1

2
⇡2

◆�
⌘ 0 , (3.35)

H↵ := �2⇡↵�
:� ⌘ 0 . (3.36)

Finally, the dynamical equations are

ḣ↵� =
�H
�⇡↵�

=
2Np
h

✓
⇡↵� � 1

2
⇡h↵�

◆
+ 2N(↵:�) , (3.37)

⇡̇↵� = � �H
�h↵�

= �N
p
h

✓
R↵� � 1

2
Rh↵�

◆
+

1

2
N

h↵�

p
h

✓
⇡��⇡�� �

1

2
⇡2

◆
� 2Np

h

✓
⇡↵�⇡�

�
� 1

2
⇡⇡↵�

◆

�
p
h
�
N ,↵:� � h↵�N :�

,�

�
+
�
⇡↵�N�

�
:�
�N↵

:�⇡
�� �N�

:�⇡
�↵ . (3.38)

See Appendix E in ? or Goodnote for details.

3.1.3 FRW Metric and its Connection to ADM variables up to 2nd order
We use the following convention for the metric variables:

g00 := �a2 (1 + 2A) , g0↵ := �a2B↵ , g↵� := a2 (ḡ↵� + 2C↵�) , (3.39)

where A, B↵ and C↵� are perturbed order variables and are assumed to be based on ḡ↵� as the metric. To the second-order, we can
write the perturbation variables explicitly as:

A ⌘ A(1) +A(2) , B↵ ⌘ B(1)
↵

+B(2)
↵

, C↵� ⌘ C(1)
↵�

+ C(2)
↵�

. (3.40)

The inverse metric expanded to the second-order in perturbation variables is (note gacgcb = �a
b

holds to all orders):

g00 =
1

a2
�
�1 + 2A� 4A2 +B↵B

↵
�
, g0↵ =

1

a2
�
�B↵ + 2AB↵ + 2B�C

↵�
�
, (3.41)

g↵� =
1

a2
�
ḡ↵� � 2C↵� �B↵B� + 4C↵

�
C��

�
.

The components of the frame four-vector uµ are introduced as:

u0 =
1

a

✓
1�A+

3

2
A2 +

1

2
V ↵V↵ � V ↵B↵

◆
, u↵ =:

1

a
V ↵ , u0 = �a

✓
1 +A� 1

2
A2 +

1

2
V ↵V↵

◆
,

u↵ = a
�
V↵ �B↵ +AB↵ + 2V �C↵�

�
=: a v↵ =: a(�v,↵ + v(v)

↵
) , (3.42)
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where V ↵ is based on ḡ↵� . The connections are:

�0
00 = H+A0 � 2AA0 �A,↵B

↵ +B↵

✓
B↵0 +

a0

a
B↵

◆
, (3.43)

�0
0↵ = A,↵ �HB↵ � 2AA,↵ + 2HAB↵ �B�C

�0
↵

+B�B[�|↵] ,

�↵

00 = A|↵ �B↵0 �HB↵ +A0B↵ � 2A,�C
↵� + 2C↵

�

�
B�0 +HB�

�
,

�0
↵�

= H(1� 2A)ḡ↵� +B(↵|�) + C 0
↵�

+ 2HC↵� +Hḡ↵�
�
4A2 �B�B

�
�
� 2A

�
B(↵|�) + C 0

↵�
+ 2HC↵�

�
�B�

⇣
2C�

(↵|�) � C |�
↵�

⌘
,

�↵

0� = H�↵
�
+

1

2

⇣
B |↵

�
�B↵

|�

⌘
+ C↵0

�
+B↵ (A,� �HB�) + 2C↵�

�
B[�|�] � C 0

��

�
,

�↵

��
= �̄↵

��
+Hḡ��B

↵ + 2C↵

(�|�) � C |↵
��

� 2C↵

�

⇣
2C�

(�|�) � C |�
��

⌘
� 2Hḡ��

�
AB↵ +B�C↵

�

�
+B↵

�
B(�|�) + C 0

��
+ 2HC��

�
,

where a vertical bar indicates a covariant derivative based on ḡ↵� . An index 0 indicates the conformal time ⌘, and a prime indicates a
time derivative with respect to ⌘.

The normal-frame vector nµ has a property n↵ ⌘ 0. Thus we have

n0 =
1

a

✓
1�A+

3

2
A2 � 1

2
B↵B↵

◆
, n↵ =

1

a

�
B↵ �AB↵ � 2B�C↵

�

�
, n0 = �a

✓
1 +A� 1

2
A2 +

1

2
B↵B↵

◆
.

(3.44)
Therefore, the normal frame condition can be derived by imposing u↵ = 0 = V↵ � B↵ + AB↵ + 2V �C↵� = 0. Using Eqs. (3.3)
and (3.7) the ADM metric variables become:

N = a

✓
1 +A� 1

2
A2 +

1

2
B↵B↵

◆
, N↵ ⌘ �a2B↵ , N↵ = �B↵ + 2B�C↵

�
, (3.45)

h↵� ⌘ g↵� , h↵� =
1

a2
�
ḡ↵� � 2C↵� + 4C↵

�
C��

�
. (3.46)

The connection becomes

�(h)�
↵�

= �̄�

↵�
+
�
ḡ�� � 2C��

� �
C�↵|� + C��|↵ � C↵�|�

�
. (3.47)

The extrinsic curvature in Eq. (3.12) gives:

K↵� = �a

"
�
Hḡ↵� +B(↵|�) + C 0

↵�
+ 2HC↵�

�
(1�A) +

1

2
Hḡ↵�

�
3A2 �B�B

�
�
�B�

⇣
2C�

(↵|�) � C |�
↵�

⌘#
, (3.48)

K↵

�
= �1

a

"⇣
H�↵

�
+B(�|�)ḡ

↵� + C↵0
�

⌘
(1�A) +

1

2
H�↵

�
(3A2 �B�B

�)�B�

⇣
2C�

(�|�)ḡ
↵� � C↵|�

�

⌘
� 2C↵�

�
B(�|�) + C 0

��

�
#
,

K↵� = � 1

a3

"⇣
Hḡ↵� +B(↵|�) + C 0↵� � 2HC↵�

⌘
(1�A) +

1

2
Hḡ↵�

�
3A2 �B�B

�
�
+ 4HC↵

�
C�� �B�

⇣
2C�(↵|�) � C↵�|�

⌘

�4C�(↵C 0�)
�

� C↵�

⇣
B�

|� +B |�
�

⌘
� C��

⇣
B↵

|� +B |↵
�

⌘#
,

K = �1

a

"⇣
3H+B↵

|↵ + C↵0
↵

⌘
(1�A) +

3

2
H

�
3A2 �B↵B↵

�
�B�

⇣
2C↵

�|↵ � C↵

↵|�

⌘
� 2C↵�

�
C 0

↵�
+B↵|�

�
#

=: �3H +  = �3H +


3(�'̇+H↵)� �

a2
�

�
+O(2) ,

K̄↵� = �a

(
�
B(↵|�) + C 0

↵�

�
(1�A)�B�

⇣
2C�

(↵|�) � C |�
↵�

⌘
� 2

3
C↵�

⇣
B�

|� + C�0
�

⌘

�1

3
ḡ↵�

h⇣
B�

|� + C�0
�

⌘
(1�A)�B�

⇣
2C�

�|� � C�

�|�

⌘
� 2C��

�
C 0

��
+B�|�

�i
)

�!
No VT

� (1� ↵)�,↵|� + 2�,(↵',�) �
1

3
ḡ↵� [� (1� ↵)��+ 2�,�',� ] �!

�!0
0 ,
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where K̄↵� = �↵� of the normal observer and vanishes if � = 0 (ignoring vector and tensor). To the background and linear order,
we have

R = 6

✓
2H2 + Ḣ +

K

a2

◆
, �R = 2


�̇� 4H+

✓
k2

a2
� 3Ḣ

◆
↵+ 2

k2 � 3K

a2
'

�
. (3.49)

3.2 Energy-Momentum Tensor in ADM Formalism
3.2.1 General Decomposition
For our purposes, we are not interested in the microscopic states of the systems, but interested in their macroscopic states, often
described by the density, the pressure, the temperature, and so on. The energy-momentum tensor for a fluid can be expressed in terms
of the fluid quantities measured by an observer with four velocity uµ as (the most general decomposition)

Tµ⌫ := ⇢uµu⌫ + pHµ⌫ + qµu⌫ + q⌫uµ + ⇡µ⌫ , 0 = Hµ⌫u
⌫ , (3.50)

where Hµ⌫ is the projection tensor and

Hµ⌫ = gµ⌫ + uµu⌫ , Hµ

µ
= 3 , uµqµ = 0 = uµ⇡µ⌫ , ⇡µ⌫ = ⇡⌫µ , ⇡µ

µ
= 0 . (3.51)

The variables ⇢, p, qµ and ⇡µ⌫ are the energy density, the isotropic pressure (including the entropic one), the (spatial) energy flux and
the anisotropic pressure measured by the observer with uµ, respectively, i.e.,

⇢ = Tµ⌫u
µu⌫ , p =

1

3
Tµ⌫Hµ⌫ , qµ = �T⇢�u

⇢H�

µ
, ⇡µ⌫ = T⇢�H⇢

µ
H�

⌫
� pHµ⌫ . (3.52)

Remember that these fluid quantities are observer-dependent.

3.2.2 Normal Frame and Its Relation to Energy Frame
The fluid quantities are observer dependent quantities, and the choice of observers to write the energy-momentum tensor (or fluid
quantities) is called a choice of frame. This choice is independent of a coordinate choice (or gauge choice). The fluid quantities are
best described by the observer moving together with the fluid, i.e., fluid rest frame, rather than an observer moving relative to the
fluid:

T f

µ⌫
= ⇢fu

f

µ
uf

⌫
+ pfHf

µ⌫
+ ⇡f

µ⌫
, 0 = Hf

µ⌫
u⌫

f
, (3.53)

where uµ

f
is the fluid velocity and the fluid quantities (⇢f , pf , etc) are the those in the fluid rest frame (defined by no spatial energy

flux qµ
f
= 0). In the presence of multiple fluids with different fluid velocities, the energy momentum tensor needs to be summed over

the fluid components:
T tot
µ⌫

=
X

f

T f

µ⌫
, ⇢totobs = Tµ⌫u

µ

obsu
⌫

obs 6=
X

f

⇢f . (3.54)

The ADM normal observer is set by a coordinate, not by any fluids. Hence, the fluid quantities (E, S, etc) described by the ADM
observer (or in the ADM formalism) are different from the fluid quantities in the rest frame (⇢f , pf , etc):

T (i)
µ⌫

= E(i)nµn⌫ +
1

3
S(i)Hµ⌫ + J (i)

µ
n⌫ + J (i)

⌫
nµ + S̄(i)

µ⌫
, (3.55)

where E(i), S(i), etc are the fluid quantities measured by the normal observer. Hence in the multi-component situation, the total
energy density measured by the normal observer is simply.

Etot =
X

i

E(i) = nµn⌫

X

i

Tµ⌫

(i) . (3.56)

Given that the general observer velocity u↵ can be set equal to the normal observer by requiring that

u↵ = a
�
V↵ �B↵ +AB↵ + 2V �C↵�

�
= a v↵ = 0 , (3.57)
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we derive the relation for the fluid quantities in two frames, normal frame vs energy frame (or rest frame), up to the second-order in
perturbations:

QN

↵
= (⇢+ p)

�
V E

↵
�B↵

�
+ (⇢+ p)

�
AB↵ + 2V E�C↵�

�
+

�
�⇢E + �pE

� �
V E

↵
�B↵

�
+
�
V E� �B�

�
⇧E

↵�
, (3.58)

�⇢N = �⇢E + (⇢+ p)
�
V E↵ �B↵

� �
V E

↵
�B↵

�
= �⇢E +

1

⇢+ p
QN↵QN

↵
, (3.59)

�pN = �pE +
1

3
(⇢+ p)

�
V E↵ �B↵

� �
V E

↵
�B↵

�
= �pE +

1

3

1

⇢+ p
QN↵QN

↵
, (3.60)

⇧N

↵�
= ⇧E

↵�
+ (⇢+ p)

�
V E

↵
�B↵

� �
V E

�
�B�

�
� 1

3
ḡ↵� (⇢+ p)

�
V E� �B�

� �
V E

�
�B�

�
(3.61)

= ⇧E

↵�
+

1

⇢+ p

✓
QN

↵
QN

�
� 1

3
ḡ↵�Q

N�QN

�

◆
,

where the spatial energy flux is zero by definition (qE
↵
=: aQE

↵
= 0).

3.3 Fully Nonlinear Einstein Equations
3.3.1 ADM Equations
Spacetime is unified in general relativity, but to follow the evolution of a system at some initial time, we need to undo the unification
and split space and time, i.e., need to cast the Einstein’s equation into Cauchy (initial-value) problem — construct initial data consis-
tent with the constraint equations, then solve the evolution (dynamical) equations. A simple analogy to E&M is that the Maxwell’s
equation is composed of two constraint equations (no time evolution)

CE ⌘ r ·E� 4⇡⇢ = 0 , CB ⌘ r ·B = 0 , (3.62)

and two dynamical equations
@

@t
E = r⇥B� 4⇡j ,

@

@t
B = �r⇥E . (3.63)

The source-free Lagrangian for E&M is

L = �1

4
Fµ⌫F

µ⌫ = �1

2
(B2 � E2) =

1

2

⇣
Ȧ+r�

⌘
·
⇣
Ȧ+r�

⌘
� 1

2
(r⇥A) · (r⇥A) , (3.64)

where we used the four vector potential Aµ

Aµ = (�,A) , E = �Ȧ�r� , B = r⇥A . (3.65)

Given the canonical momentum
⇡� :=

@L
@�̇

= 0 , ⇡A :=
@L
@Ȧ

= �E , (3.66)

it is clear that the electric potential � is not a dynamical variable, as no time-derivative appears in the Lagrangian. The Hamiltonian
for the source-free E&M is

H = Ȧ · ⇡A � L =
1

2


⇡A · ⇡A + (r⇥A) · (r⇥A)

�
� ⇡A ·r� , (3.67)

and the last term can be manipulated to yield the surface term and the constraint equation:

⇡A ·r� = r · (�⇡A)� �r · ⇡A . (3.68)

Using the Hamiltonian formalism, the constrain equation is obtained as

0 = ⇡̇� = �@H

@�
= r · ⇡A = CE , (3.69)

(the other constraint CB = 0 is trivially satisfied, given B = r⇥A). Two dynamical equations yield

Ȧ =
@H

@⇡A
= ⇡A �r� = �E�r� , ) Ḃ = �r⇥E , (3.70)

⇡̇A = �@H

@A
= �1

2

@

@A
B2 , ) Ė = r⇥B . (3.71)

49



AST802 Advanced Theoretical Cosmology JAIYUL YOO

A complete set of the ADM equations is the following Bardeen (1980). The Einstein equation (Gab / Tab) is split: 00-part and
0↵-part, involving non-dynamical quantities N and N↵ (the Lagrangian is independent of their time derivatives). These give two
constraint equations that relate the energy-momentum to the extrinsic and the intrinsic geometry. ↵�-part involves dynamics of h↵� :
Two propagation equations (i.e., time derivatives, how they evolve); Finally, there exist two usual conservation equations from the
energy-momentum tensor. Energy constraint and momentum constraint equations:

R(h) = K̄↵�K̄↵� � 2

3
K2 + 16⇡GE + 2⇤ , K̄�

↵:� � 2

3
K,↵ = 8⇡GJ↵ . (3.72)

Trace and tracefree ADM propagation equations:

K,0N
�1 �K,↵N

↵N�1 +N :↵
↵
N�1 � K̄↵�K̄↵� � 1

3
K2 � 4⇡G (E + S) + ⇤ = 0 , (3.73)

K̄↵

�,0N
�1 � K̄↵

�:�N
�N�1 + K̄��N

↵:�N�1 � K̄↵

�
N�

:�N
�1 = KK̄↵

�
�
✓
N :↵

�
� 1

3
�↵
�
N :�

�

◆
N�1 + R̄(h)↵

�
� 8⇡GS̄↵

�
.

Energy and momentum conservation equations:

E,0N
�1 � E,↵N

↵N�1 �K

✓
E +

1

3
S

◆
� S̄↵�K̄↵� +N�2

�
N2J↵

�
:↵

= 0 ,

J↵,0 � J↵:�N
� � J�N

�

:↵ �KJ↵N + EN,↵ +NS�

↵:� + S�

↵
N,� = 0 . (3.74)

In the multi-component system, two conservation equations hold separately for each component, and interaction terms should be
considered if there is any between components.

3.3.2 Second-Order Equations
The basic set of the ADM equations is derived with fluid quantities based on the normal-frame. By using Eq. (3.58) we can recover
the equations with fluid quantities based on the energy frame. The fluid quantities are based on the energy frame here!

The definition of the extrinsic curvature K = K̄ + �K:

K̄ + 3H + �K � 3HA+ Ċ↵

↵
+

1

a
B↵

|↵ ⌘ n0 , (3.75)

where the quadratic terms n0 can be read from Eq. (3.48).

Energy constraint equation:

16⇡Gµ+ 2⇤� 6H2 � 6

a2
K̂ + 16⇡G�µ+ 4H�K � 1
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⇣
2C�|↵

↵ �
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↵

⌘
⌘ n1 . (3.76)

Momentum constraint equation:

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↵
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1
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↵
) ⌘ n2↵ . (3.77)

Trace of the ADM propagation equation:

�
h
3Ḣ + 3H2 + 4⇡G (µ+ 3p)� ⇤

i
+ �K̇ + 2H�K � 4⇡G (�µ+ 3�p) +

✓
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◆
A ⌘ n3 . (3.78)

Trace-free ADM propagation equation:

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Energy conservation equation:

[µ̇+ 3H (µ+ p)] + �µ̇+ 3H (�µ+ �p)� (µ+ p) (�K � 3HA) +
1

a
(µ+ p)

⇥
V ↵ �B↵ +AB↵ + 2V �C↵

�

⇤
|↵ ⌘ n5 . (3.80)

Momentum conservation equation:

1
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⇥
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⌘
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For the multi-fluid system, the conservation equations become modified with energy transfer among different fluids. Energy
conservation equation for the i-th component:

h
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+ �µ̇(i) + 3H

�
�µ(i) + �p(i)

�
�
�
µ(i) + p(i)

�
(�K � 3HA)

+
1

a

�
µ(i) + p(i)

� h
V ↵

(i) �B↵ +AB↵ + 2V �

(i)C
↵

�

i

|↵
+

1

a
�I(i)0 ⌘ n(i)5 . (3.82)

Momentum conservation equation for the i-th component:

1

a4

h
a4

�
µ(i) + p(i)

� ⇣
V(i)↵ �B↵ +AB↵ + 2V �

(i)C↵�
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�
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a

⇣
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⌘
⌘ n(i)6↵ . (3.83)

All the quadratic terms ni can be found in Hwang and Noh (2007).
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