
1 Early Universe Physics

1.1 Chronology of the Early Universe

t T / ⇢
1/4 Redshift Event

10
�43 s 10

19 GeV 1 Planck energy, Quantum gravity? Big Bang Singularity?
10
�38 s 10

16 GeV 1 Inflation ends? Grand Unification Scale? Baryogenesis?
10
�11 s 100 GeV 10

15 Electroweak phase transition (spontaneous symmetry breaking)
10
�5 s 150 MeV 10

12 Quark-hadron (QCD) phase transition (Tc ' ⇤QCD)
1 sec 1 MeV 6⇥ 10

9
⌫e decoupling (⌫e ⇡ 1 MeV, ⌫µ, ⌫⌧ ⇡ 3 MeV )

6 sec 500 keV 2⇥ 10
9

eē annihilation
3 min 100 keV 4⇥ 10

8 Nucleosynthesis (BBN)
60 kyr 0.75 eV 3200 Matter-radiation equality
300 kyr 0.3 eV 1100 Atom formation, photon decoupling (CMB)
400 Myr 5 meV ⇠ 10 Reionization
9 Gyr 0.33 meV 0.4 Dark energy-matter equality
Now 10

�4 eV (2.73 K) 0 now

At the early Universe, the Universe was denser and hotter, dominated by the relativistic particles and radiation. Because of its
high energy, particles and anti-particle pairs are created and annihilated. This process depends on the particle contents of our nature.
The standard model of particle physics is well tested and understood up to ⇠ 1 TeV (horizontal line in the table), beyond which
the predictions from the standard model are somewhat uncertain and other beyond-the-standard-model physics have vastly different
predictions. Our discussion will be limited to the standard model physics.

In this radiation dominated era, almost all particles behave like massless particles, and their energy density evolves as radiation
⇢ / 1/a

4. In RDE, the Hubble expansion and the age of the Universe are well approximated in terms of the equilibrium temperature T
of the plasma as

H ' 0.3 sec
�1p

g⇤

✓
T
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◆2

, t =
1

2H
' 1 sec

✓
T

1 MeV

◆�2
g
�1/2
⇤ , (1.1)

where g⇤ is the total spin-degeneracy factor shown in Figure 1.1. Particles stay in thermal equilibrium with the plasma, as long as
their interaction rate � with the plasma remains sufficiently high:

� = n h�vi � H , (1.2)

where � is the interaction cross section [�] = L
2, v is the relative velocity of the particles in interaction, and n is the particle number

density. Note that the interaction rate is averaged over the particle velocity distribution. A useful conversion relation is

1 MeV = 1.602⇥ 10
�6

erg = 1.161⇥ 10
10

K . (1.3)

At T < 10
16 GeV, the dominant interaction among the relativistic particles is mediated by massless gauge bosons, and the cross

section is � ⇠ ↵
2
/T

2, such that the interaction rate is � / n�v ⇠ ↵
2
T , where the SU(2) gauge coupling constant is g = 1/

p
4⇡↵

and we used n / T
3, v ⇠ 1. Therefore, the interaction is efficient to maintain the thermal equilibrium

�

H
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T
� 1 for T < 10

16
GeV . (1.4)

At lower temperature T < 300 GeV, the interactions are now mediated by massive gauge bosons (e.g., mZ ' 100 GeV), and the
cross section is � ⇠ G

2

F
T

2, such that the interaction rate is � / G
2

F
T

5. Therefore, the interaction is again efficient to maintain the
thermal equilibrium up to T > 1 MeV,

�

H
⇠ G

2

F
T

3
⇠

✓
T

1 MeV

◆3

� 1 for T > 1 MeV , (1.5)

where the Fermi constant is GF = 1.15 ⇥ 10
�5 GeV�2. Then, the question arises: what happens at T > 10

16 GeV? The Universe
might not have been in thermal equilibrium at such early time.

A brief overview of the most important cosmological events are as follows (?):



• At T � 1 TeV, two important events must take place: inflationary expansion and baryogensis. An inflationary expansion
for a very short period of time must have taken place to explain some of the key problems in observational cosmology, and
some mechanism beyond the standard model must have been in operation to generate the asymmetry between baryons and
anti-baryons we observe today. The former is highly constrained and relatively well understood, while the latter is very poorly
understood. Beyond these two events that must have happened in the early Universe, there might have been other interesting
events in other beyond-the-standard-model physics such as the grand unification. During this stage, quarks and gluons are
not bound to hardronic states, such that there exist no protons, neutrons and so on. The Universe was made of fundamental
elementary particles, forming a hot plasma (or soup).

• At T ⇠150 MeV (t ⇠ 10
�5 sec), the quark–hadron phase transition occurs, confining quarks into hadrons. Lattice QCD

calculations show that the electroweak and QCD phase transitions are smooth. Once the transition was complete, the Universe
was filled with a hot plasma consisting of three types of relativistic pions ⇡±

, ⇡
0 (m⇡± = 139.6 MeV, m⇡0 = 135.0 MeV),

non-relativistic nucleons (p, n), relativistic leptons e
±, µ± (mµ = 105 MeV), and their associated neutrinos (⌫e, ⌫̄e, ⌫µ, ⌫̄µ,

⌫⌧ , ⌫̄⌧ ), and photons, all in thermal equilibrium. Heavier lepton ⌧ (m⌧ = 1.78 GeV) have already annihilated, and only a trace
amount due to lepton asymmetry must have remained.

• At T ⇠ 100 MeV (t ⇠ 10
�4 sec), pions become non-relativistic, and ⇡±-pairs annihilate each other, while the neutral pions ⇡0

decay into photons. From this point on, protons and neutrons are the only hadronic species left. At about the same time,
muons µ± start to annihilate.

• At T ⇠ 1 MeV (t ⇠ 1 sec), electrons and positrons become non-relativistic, annihilating each other. At about the same
time, e-neutrinos ⌫e also decouple from the hot plasma. µ- and ⌧ -neutrinos decouple a bit earlier than e-neutrinos. The weak
interactions become ineffective, and the ratio of neutrons to protons is frozen.

• At T ⇠ 0.1 MeV (t ⇠ 3 minutes), the Big Bang Nucleosynthesis (BBN) starts, synthesizing protons and neutrons to produce
D, He and a few other heavy elements. This nuclear fusion is exactly the same as one at the core of stars, but it takes place
everywhere in the Universe.

• At T ⇠ 4000 K (t ⇠ 2 ⇥ 10
5 yr), free electrons and protons recombine to form neutral hydrogen atoms. The Universe then

becomes transparent to photons, and these free-streaming photons are observed today as the cosmic microwave background
(CMB) in a black-body distribution.

• dark age, first stars, cosmic reionization, habitable planets and life formation, dark energy domination

1.2 Thermal Equilibrium in the Early Universe

1.2.1 Chemical Potential

• Thermodynamic Quantities.— Consider creating a system with internal energy U in an environment with temperature T . The
Helmholtz free energy F = U � TS is needed to create such system with the help from the environment, where S is the entropy of
the final system. In a given environment, the system tends to minimize the internal energy or maximize the entropy, i.e., minimize
the Helmholtz free energy. At the minimum of the Helmholtz free energy, the system reaches the thermal equilibrium. The Enthalpy
H = U +PV is similar, but such system is created from a small volume, that more energy for PV work is needed. Finally, the Gibbs
free energy is the combination of all: G = U � TS + PV . They are all related by the Legendre transformation.

• Legendre Transformation.— converts a function of a set of variables to another function of their conjugate variables. For example,
consider a function f(x, y). The conjugate variables of (x, y) are (U,W )

U :=

✓
@f

@x

◆

y

, W :=

✓
@f

@y

◆

x

, df = U dx+W dy . (1.6)

Now consider a combination of two variables Wy and a new function g := f �Wy:

d(Wy) = y dW +W dy , dg = df � d(Wy) = U dx� y dW , (1.7)

which implies that the function g has two independent variables x and W :

g = g(x,W ) , U =

✓
@g

@x

◆

W

, y = �

✓
@g

@W

◆

x

. (1.8)
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In this way, three functions can be obtained by Legendre transforming f(x, y) with two variables.

• Chemical Potential.— Consider a thermodynamic system, in which particles are created and annihilated. The amount of energy
needed to create a particular species is called the chemical potential:

dU = TdS � PdV +

nX

i=1

µidNi , µi =

✓
@U

@Ni

◆

S,V,Nj 6=i

, (1.9)

when the entropy and the volume of the system are held fixed. While exact in the definition, it is in practice difficult to find a
situation, where the volume and the entropy is held fixed. Instead, the other relation is more illuminating for the meaning of the
chemical potential:

dG = �SdT + V dP +

nX

i=1

µidNi , µi =

✓
@G

@Ni

◆

T,P,Nj 6=i

. (1.10)

In thermodynamic equilibrium with constant temperature and pressure, the system exchange particles with its environments. Then
we have

dG = 0 ,

nX

i=1

µidNi = 0 . (1.11)

The chemical potential µ is independent of its fundamental physical properties of particles, but determined by the interactions and
the thermodynamic system (e.g., what is conserved). However, since photons are always created and absorbed by a black body, its
chemical potential is always zero in equilibrium. Another example is the electron pair production process:

� + �  ! e+ ē , 2 µ� = µe + µē , ) µe = �µē , (1.12)

in which the chemical potential of a particle and its anti-particle has the opposite sign.

1.2.2 Equilibrium Distribution

As long as the scattering process or the interactions between particles are rapid, particles are in kinetic equilibrium, and their phase-
space distribution function f(x, p, t) is described by the thermal equilibrium distribution:

f(p, t)d
3p =

g

(2⇡)3

d
3p

exp[(E � µ)/T ]± 1
,

⇢
+ : Fermion

� : Boson
, (1.13)

where g is the spin-degeneracy factor for a given phase-space density and (2⇡~)3 is the unit phase-space volume. Mind that our
convention assumes ~ = c = k = 1. In a homogeneous and isotropic background universe, the position dependence and directional
dependence vanish. The physical quantities of such particle distribution are

n(t) =

Z
d
3p f(p, t) =

g

2⇡2

Z 1

m

p
E2 �m2 EdE

exp[(E � µ)/T ]± 1
, (1.14)

⇢(t) =

Z
d
3p Ef(p, t) =

g

2⇡2

Z 1

m

p
E2 �m2 E

2
dE

exp[(E � µ)/T ]± 1
, (1.15)

P (t) =

Z
d
3p

1

3

p
2

E
f(p, t) =

g

6⇡2

Z 1

m

(E
2
�m

2
)
3/2

dE

exp[(E � µ)/T ]± 1
, (1.16)

where the isotropic pressure is derived from P =
1

3
n hpvi and v = p/E. Since the baryon to photon number ratio is so small,

⌘ :=
nb

n�
' 5⇥ 10

�10
, (1.17)

the chemical potential of all species may be approximated as zero for computing the thermodynamic quantities of the early Universe,
where photons with µ� = 0 are the dominant. The ratio of the lepton number density to the photon is also expected to be the same
as ⌘.

For non-relativistic particles (m � T , E ' m), the distinction between Fermionic and Bosonic particles disappear, and they all
follow the classical Maxwell-Boltzmann distribution

f(p, t) =
g

(2⇡)3
exp

✓
�
m� µ

T

◆
exp

✓
�

p
2

2mT

◆
. (1.18)
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Figure 1.1: Effective number of relativistic dof. The gray bands represent the QCD phase transition and the neutrino decoupling. The
difference around 1 TeV is due to the non-perturbative QCD effect. Taken from Baumann et al.

By integrating the distribution, we obtain

n(t) = g

✓
mT

2⇡

◆3/2

exp


�
m� µ

kT

�
, ⇢(t) = mn , P (t) = nkT (1.19)

In contrast, for relativistic particles (T � m, T � µ), the physical quantities are

n(t) =

(
g

⇡2 ⇣(3)
�
kT

~c
�3

: Boson

3g

4⇡2 ⇣(3)
�
kT

~c
�3

: Fermion
, ⇢(t) =

(
g⇡

2

30
kT
�
kT

~c
�3

: Boson

7

8

g⇡
2

30
kT
�
kT

~c
�3

: Fermion
, P (t) =

1

3
⇢(t) , (1.20)

where the Riemann-Zeta function is

⇣(n) :=

1X

i=1

1

in
, ⇣(3) ' 1.202 . (1.21)

Since the number density of non-relativistic particles in thermal equilibrium is exponentially suppressed, only the relativistic compo-
nents matter in determining the thermodynamic quantities of the system:

ntot(T ) =
⇣(3)

⇡2
g⇤,nT

3
, ⇢tot(T ) =

⇡
2

30
g⇤T

4
, Ptot(T ) =

1

3
⇢(T ) , (1.22)

where we assumed µi ⌘ 0 for all species and defined

g⇤,n :=

X

i2Boson

gi

✓
Ti

T

◆3

+

✓
3

4

◆ X

i2Ferm.

gi

✓
Ti

T

◆3

, g⇤ :=
X

i2Boson

gi

✓
Ti

T

◆4

+

✓
7

8

◆ X

i2Ferm.

gi

✓
Ti

T

◆4

. (1.23)

Now we want to define another useful quantity, entropy density s(T ). Taking the derivative of P (t) with respect to T and treating
the chemical potential as a function of T , we obtain

dP

dT
= �

4⇡

3

Z 1

0

dp (p
3
T )

✓
df

dp

◆
E

T 2
+

d

dT

⇣
µ

T

⌘�
,

df

dp
= �

p

ET
f
2
(p, t) exp

✓
E � µ

T

◆
, (1.24)
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and with integration by part we re-write the derivative as

dP

dT
=
⇢+ P

T
+ nT

d

dT

⇣
µ

T

⌘
⇡
⇢+ P

T
. (1.25)

Manipulating the conservation equation

⇢̇+ 3H(⇢+ P ) = 0 , d
�
⇢a

3
�
= �Pd

�
a
3
�
,

d

dT


(⇢+ P )a

3

�
= a

3
dP

dT
, (1.26)

we can arrive at the conservation equation

d(sa
3
) = �

⇣
µ

T

⌘
d(na

3
) ⇡ 0 , s :=

⇢+ P

T
�

nµ

T
⇡
⇢+ P

T
. (1.27)

In most cases, the chemical potential is negligible (µ ⌧ T ) or the number density is conserved (n / 1/a
3), such that the combi-

nation (sa
3
) is conserved throughout the evolution. Simplifying the relations for s and dP/dT by assuming µ ⌘ 0, we obtain the

thermodynamic relation

dT

T
=

dP

⇢+ P
, S := sa

3
, TdS = d

⇥
(⇢+ P )a

3
⇤
� (⇢+ P )a

3
dT

T
= d

�
⇢a

3
�
+ P d(a

3
) , (1.28)

with which we can identify s defined above as the entropy density and the total entropy S is conserved. Assuming µ ⌘ 0, the entropy
density for relativistic particles is then obtained as

s ⌘
1

T
(⇢+ P )tot = g⇤,s

✓
2⇡

2

45

◆
T

3
, (1.29)

where we defined

g⇤,s :=
X

i2Boson

gi

✓
Ti

T

◆3

+

✓
7

8

◆ X

i2Ferm.

gi

✓
Ti

T

◆3

. (1.30)

The conservation of entropy of the Universe states

d

dt
(sa

3
) = 0 , g

1/3

⇤,s (T ) T /
1

a
. (1.31)

1.2.3 Spin degeneracy factors

The spin degeneracy factor accounts for the number of degenerate states at the same energy level. The photon has two polarization
(g� = 2), while neutrinos are only left-handed (g⌫ = 1). Note that there exist three generations (⌫, µ, ⌧ ) of neutrinos and their
anti-particles (⌫̄, µ̄, ⌧̄ ). Spin-1/2 fermions like electrons have ge = 2, and there exist three generations and their anti-particles.

At T > 300 GeV, there exist 8 gluons (gg = 2), 3 weak gauge bosons (W±, Z), Higgs doublet (mH = 125 GeV), three
generations of quarks (gq = 2; two quarks per generation per color) and leptons (ge, g⌫) to yield1

g⇤ = g� + 8⇥ gg + 3⇥ gW±,Z + gH +
7

8
⇥ 3⇥ (3⇥ 2⇥ 2⇥ gq + 2⇥ g⌫ + 2⇥ ge) = 106.75 . (1.32)

At 150 MeV gluons hadronize, and soon after most of the particles become non-relativistic, according to their mass (mH = 125 GeV,
mZ = 91 GeV, mW± = 80 GeV, m⌧ = 1.78 GeV, mµ = 105 MeV). So at T ⇠ 100 MeV, there left only photons, electrons, and
three generations of neutrinos:

g⇤ = g� +
7

8
(2⇥ ge + 2⇥ 3⇥ g⌫) = 10.75 . (1.33)

At a freeze-out temperature T ⇠ 1 MeV, all three generations of neutrinos decouple from the rest of the plasma (T⌧ ' 3.7 MeV,
Tµ ' 2.4 MeV, T⌫ ' 1 MeV), and its temperature strictly declines as T⌫ / 1/a, since its g⇤,s remains unchanged, after the
decoupling. However, at about T� ⇠ 0.51 MeV, electrons and anti-electrons become non-relativistic, and they annihilate intro
photons , transferring its entropy to the photon plasma, but not to the decoupled neutrinos, which slows the decline of T� . Assuming
an instantaneous transfer of entropy, the change in the spin-degeneracy factor of the photon plasma can be computed as

g
before

⇤,s = g� +
7

8
(ge + gē) =

11

2
! g

after

⇤,s = g� . (1.34)

1After the spontaneous symmetry breaking, the weak gauge bosons are massive (g
W±,Z

= 3), and the Higgs boson is left with only one dof (gH = 1), such that
there exist 10 dof. Mind that at this energy scales, they are all non-relativistic. However, before the symmetry breaking, the gauge bosons are massless (g

W±,Z
= 2),

and the Higgs boson doublet has full dof (gH = 4; two per each component), such that the total dof remains the same.
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Given the conservation of g⇤,sT 3 throughout the annihilation, the neutrino temperature is slightly lower than the photon temperature,
after the annihilation event

T⌫ =

✓
4

11

◆1/3

T� /
1

a
, (1.35)

and the spin degeneracy factor is then

g⇤ = g� +
7

8
(2⇥ 3⇥ g⌫)⇥

✓
4

11

◆4/3

= 3.36 . (1.36)

The total radiation density (�, ⌫) is then

⇢rad =

"
1 +N⌫ ⇥

7

8

✓
4

11

◆4/3
#
⇢� , N⌫ = 3 , ⇢� = aBT

4

�
, (1.37)

where the radiation constant aB is related to the Stefan-Boltzmann constant �B as

aB =
4�B

c
= 7.573⇥ 10

�15
erg cm

�3
K
�4

. (1.38)

In fact, at the annihilation of electrons and anti-electrons, the neutrino decoupling was incomplete, and some entropy is dumped
into neurinos as well. Hence the the neutrino temperature relation above is not precise, and the correction is often rephrased as the
effective relativistic degrees of freedom: N⌫ = 3.04. The evolution of the spin degeneracy factors is shown in Figure 1.1. Today the
photon plasma cools down to

T� = 2.73 K , n� = 413 cm
�3

, ⇢� = 4.7⇥ 10
�34

g cm
�3

, !� = 2.5⇥ 10
�5

. (1.39)

The cosmic neutron plasma is

T⌫ = 1.95 K , n⌫+⌫̄ = 113 cm
�3

, n8⌫ = 338 cm
�3

(⌫ + µ+ ⌧) , !⌫ = 1.7⇥ 10
�15

,

(1.40)
for massless neutrinos. Assuming they are relativistic at decoupling, the massive neutrinos

⇢⌫ = 113m⌫ cm
�3

, !⌫ = 0.1

⇣
m⌫

10 eV

⌘
. (1.41)

1.3 Distribution of Decoupled Species

As the Universe expands and cools down, the interaction rate � between species falls below the expansion rate H(t), so that a
particle species decouples from the plasma. This is called “freeze-out” because there exist no further interactions and its distribution
remains frozen. Since the momentum of both massless and massive particles redshifts as 1/a in the background universe, the current
phase-space distribution of a decoupled species can be expressed in terms of the equilibrium distribution at decoupling:

f(p, t) = feq

✓
p

a

adec
, tdec

◆
, t � tdec , p(tdec) = p

a

adec
. (1.42)

When a relativistic species is decoupled at Tdec � m, the Fermi-Dirac or Bose-Einstein distribution is maintained, and hence the
number density is as abundant as photons, but the freeze-out condition dictates its temperature declines as 1/a:

f(p, t) =
g

(2⇡)3


exp

✓
p a

adecTdec

◆
± 1

��1
, T (t) = Tdec

adec

a
, (1.43)

where E ' p for relativistic particles. Note that the decoupled species evolves separately, so that the change in the spin-degeneracy
factor in the other plasma is irrelevant here.

However, when particles are non-relativistic (T ⌧ m) at decoupling, the distribution function is the Maxwell-Boltzmann dis-
tribution, and according to the freeze-out condition, the temperature of the decoupled species declines faster than the relativistic
particles

f(p, t) =
g

(2⇡)3
exp

✓
�

m

Tdec

◆
exp

✓
�

p
2
a
2

2m a
2

dec
Tdec

◆
, T (t) = Tdec

⇣
adec

a

⌘2
. (1.44)
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Consequently, the number density of a decoupled species evolves as

n(t) =


a(tdec)

a(t)

�3
neq(tdec) , (1.45)

for both relativistic and non-relativistic particles. Using the entropy conservation in Eq. (1.31), we obtain the temperature ratio and
the number density ratio of a decoupled relativistic species to the photons as


T�(tdec)

T�(t)

�3
=

g⇤,s(t)

g⇤,s(tdec)

a
3
(t)

a3(tdec)
,

n(t)

n�(t)
=

ge↵

2


T (t)

T�(t)

�3
=

ge↵

2

g⇤,s(T )

g⇤,s(Tdec)
, (1.46)

where ge↵ = g for bosons and ge↵ = 3g/4 for fermions and we used the temperature of the decoupled species T (tdec) = T�(tdec) at
the time of decoupling.

1.3.1 Boltzmann Equation and Relic Number Density

The particle interactions involve multiple species, and they depend on the velocity distribution of the particles. Consequently, solving
for their evolution requires coupled differential equations, called the Boltzmann equation. Consider an interaction  + a+ b+ · · ·$

i + j + · · · that involves many particles and their creation and annihilation. The Boltzmann equation for a species  (similarly for
other particles) is

df 

dt
= C [f ] , (1.47)

where the right-hand side C is called the collision term that depends on the interaction and the distribution functions of the other
particles in interaction. In the absence of collision, the Liouville theorem states that the phase-space distribution is conserved.
In a homogeneous and isotropic universe, the phase-space distribution function cannot depend on a position or a direction, i.e.,
f = f (p, t),

df 

dt
=
@f 

@t
+
@p

@t

@f 

@p
,

@p

@t
= �Hp , (1.48)

where we used p / 1/a for any particles in the background universe. Integrating over the momentum, we derive that the number
density evolves as

dn 

dt
+ 3Hn =

Z
d
3
p C [f ] , n =

Z
d
3
p f . (1.49)

In the absence of collision, the number density decreases as n / 1/a
3, and the term 3Hn is called the Hubble drag (or friction)

due to the expansion of the Universe.
The collision term depends on the interaction process, and formally it can be expressed as

Z
d
3
p C [f ] =

 
Y

i

Z
d
4
pi

!
(2⇡)

4
�
D
(p + pa + · · ·� pi � pj � · · · ) (1.50)

⇥


|M|

2

 fifj · · · (1± f )(1± fa) · · ·� |M|
2

!fa · · · f (1± fi)(1± fj) · · ·

�
.

The first line is just the energy-momentum conservation of the process, the second line shows the interaction of consideration. The
invariant matrix element M can be derived from the QFT calculations, and with T-invariance (or CP-invariance) it is identical in
both directions (|M|

2
:= |M|

2

! = |M|
2

 ). The distribution functions fifj · · · in the second line indicates that more particles
i, j, · · · create more particles  , a, b, · · · , and vice versa. The extra factors such as (1 ± f ) are called the Pauli block or the Bose
enhancement.

For the moment, the collision term is macroscopically treated, and a significant simplification can be made, if most species but  
are in thermal equilibrium and the temperature is low T ⌧ E � µ. Consider a simplified interaction  +  ̄ $ X + X̄ , in which  
and  ̄ annihilate and a pair of X and X̄ are created. At this low temperature T ⌧ E � µ, the number densities of particles can be
written as

n =

Z
d
3
p f = e

µ/T
nEQ , nEQ :=

Z
d
3
p fEQ , fEQ := f(µ ⌘ 0) '

g

(2⇡)3
e
�E/T

, (1.51)

where we ignored ±1 in the distribution function fEQ Further ignoring the Pauli block or the Bose enhancement, The second line of
the collision term is then greatly simplified as

fXfX̄ � f f ̄ = e
�(E +E ̄)/T

h
e
(µX+µX̄)/T

� e
(µ +µ ̄)/T

i
= e
�(E +E ̄)/T

"
nXnX̄

n
EQ

X
n
EQ

X̄

�
n n ̄

n
EQ

 
n
EQ

 ̄

#
, (1.52)
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Figure 1.2: The relic abundance for a simple two-body process with a constant � := h�vi.

where we used the energy conservation E +E
 ̄
= EX+EX̄ . Finally, we define the thermally-averaged velocity times cross-section

h�vi as

n
EQ

 
n
EQ

 ̄

⌦
�
  ̄!XX̄

|v|
↵
:=

 
Y

i

Z
d
3
pi

!
(2⇡)

4
�
D
(p + p

 ̄
� pX � pX̄)|M|

2
e
�(E +E ̄)/T , (1.53)

and the Boltzmann equation (1.49) is now

dn 

dt
+ 3Hn = n

EQ

 
n
EQ

 ̄

⌦
�
  ̄$XX̄

|v|
↵
"

nXnX̄

n
EQ

X
n
EQ

X̄

�
n n ̄

n
EQ

 
n
EQ

 ̄

#
. (1.54)

With near thermal equilibrium but  particles, we arrive at the final expression of the Boltzmann equation

dn 

dt
+ 3Hn = h�vi

�
n
2

 ,EQ
� n

2

 

�
. (1.55)

At thermal equilibrium, the number density n will be equivalent to n
EQ

 
, and no further net change (creation or annihilation) takes

place. If n > n
EQ

 
, more decay of  and  ̄ will further reduce n and increase nX , and this is reflected in the collision term, where

the RHS is negative.
Given the entropy density scales as a�3, it is convenient to define a scaled number density Y that does not change in time as long

as n / 1/a
3,

Y :=
n 

s
, Y

eq

 
:=

n
eq

 

s
. (1.56)

The Boltzmann equation is then manipulated in terms of Y as

dY 

dt
= s h�vi

�
Y

2

 ,eq
� Y

2

 

�
, (1.57)

and by defining a scaled (inverse) temperature x

x :=
m 

T
, t =

1

2H
/

1

T 2
,

d ln t

dx
=

2

x
, (1.58)

the Boltzmann equation can be written as

x

Y
eq

 

dY 

dx
= �

n
eq

 
h�vi

H(x)

2

4
 

Y 

Y
eq

 

!2

� 1

3

5 . (1.59)
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The variable x determines if the particle species is relativistic (x ⌧ 1) or non-relativistic (x � 1), but it also determines the flow
of time (x � 1 at late time). Given the interaction cross-section, the Boltzmann equation can be numerically solved with the initial
condition of thermal equilibrium at early time Y (x = 0) = Yeq for all species. Assuming a constant cross-section, several solutions
to the Boltzmann equation are given in Figure 1.3, in which the equilibrium distribution decays in time as the particle species becomes
non-relativistic (x ' 1) and its abundance is exponentially suppressed compared to the plasma. For a weak cross-section, the particle
species decouples early when they are relativistic, and their final abundance is similar to those of photons, rather insensitive of its
exact value of the cross-section. For a stronger cross-section, the particles stay in thermal equilibrium longer, and its final relic
abundance is sensitively dependent on the value of the cross-section.

A simple analytic approximation can be made to solve the Boltzmann equation. First, the equilibrium abundance Y eq
= n

eq
/s is

Y
eq

 
(x) =

45⇣(3)

2⇡4

g
e↵

 

g⇤,s(x)
for x⌧ 1 , Y

eq

 
(x) =

90

(2⇡)7/2

g 

g⇤,s(x)
x
3/2

e
�x

for x� 1 , (1.60)

where g
e↵

 
= g for Boson and g

e↵

 
= 3g /4 for Fermion. Second, the freeze-out (or decoupling) is assumed to be instantaneous, if

� = H at xf . Equating the interaction rate � at equilibrium with the Hubble parameter in RDE

H(x) =
8⇡G

3
⇢tot =

r
⇡2g⇤
90

m
2

 

x2Mpl

, M
2

pl
=

1

8⇡G
, (1.61)

we obtain the freeze-out time

xf =

r
90

⇡6g⇤
⇣(3)g

e↵

 
h�vim Mpl for x⌧ 1 , x

�1/2
f

e
xf =

r
45

4⇡5g⇤
g h�vim Mpl for x� 1 . (1.62)

The relic density of a relativistic species can then be obtained by using Eq. (1.46) as

⌦ h
2

⌦�h
2
=
⇢ 

⇢�
=

g
e↵

 

2

✓
T 

T�

◆4

=
g
e↵

 

2


g⇤,s(x)

g⇤,s(xf )

�4/3
. (1.63)

Given that g⇤,s always decreases in time and ⌦�h
2
= 2.5 ⇥ 10

�5, the relic density of a relativistic species today is as negligible
as the photon energy density. Now we consider non-relativistic relic species today, also known as the WIMP (weakly interacting
massive particles). WIMPS are non-relativistic today, and its energy density is dominated by their rest mass energy. However, it can
be relativistic (xf ⌧ 1) or non-relativistic (xf � 1) at the freeze-out. The former is called the hot relic, and their abundance is as
much as the photons today, while the latter is called the cold relic.

• Hot relics.— The relic density of a hot species is then

⇢ = m Y
eq

 
(xf )s(x0) , ⌦ h

2
=

8⇡G

3H
2

0

⇢ h
2
= 7.64⇥ 10

�2

"
g
e↵

 

g⇤,s(xf )

#⇣
m 

1 eV

⌘
. (1.64)

For hot relics, their number density is as large as the photons, and it is rather insensitive to xf . Given the observational constraint
⌦toth

2 . 1, we can derive that the mass of hot relics should be smaller than

m  13.1 eV

"
g⇤,s(xf )

g
e↵

 

#
, (1.65)

which corresponds to

m⌫  93.8 eV , g⇤,s(xf ) = 10.75 , g
e↵

⌫
=

3

4
⇥ 2⇥ g⌫ , (1.66)

for massive neutrinos (one species). This cosmological limit is called the Cowsik-McClelland bound. The Planck constraint is
⌃m⌫ < 0.23 eV, and some recent Ly↵-forest constraint is < 0.12 eV. The neutrino oscillation constraints give 0.0006 < !⌫ <

0.0025.

• Cold relics.— Similar calculations can be made for cold relics, but the abundance Y eq

 
is exponentially sensitive to xf . The solution

for the freeze-out for x� 1

e
�xf =

✓r
45

4⇡5g⇤
g h�vim Mpl

◆�1
x
�1/2
f

, (1.67)

10



Figure 1.3: Cosmological constraints on the mass of WIMP ⌦ h
2.

can be used to express the abundance and the relic density

Y
eq

 
(xf ) =

r
45

8⇡2

xfp
g⇤,s(xf )

1

h�vim Mpl

, ⌦ h
2
= 0.86

xfp
g⇤,s(xf )


h�vi

1010 GeV
�2

��1
. (1.68)

The relic abundance is sensitively dependent upon h�vi, and the relic energy density is independent of m . For example, stable
neutrinos of mass between 1 MeV and mZ = 100 GeV fall into this cold relic, and their weak interaction rate is

h�vi ⇡
c2

2⇡
G

2

F
m

2

⌫
x
�b

, (1.69)

where c2 ' 5 for a Dirac neutrino, b ⇠ 1, and GF is the Fermi constant. With this, the freeze-out time can be solved as

xf ' 17.8 + 3 ln

⇣
m⌫

1 GeV

⌘
, (1.70)

and the relic energy density is

⌦⌫h
2
'

3.95

c2

x
b+1

fp
g⇤,s(xf )

⇣
m⌫

1 GeV

⌘�2
= 1.82

⇣
m⌫

1 GeV

⌘�2 h
1 + 0.17 ln

⇣
m⌫

1 GeV

⌘i
, (1.71)

The observational constraint puts the mass of stable neutrinos

m⌫ � 1.4 GeV , (1.72)

and the relic density is smaller with larger mass due to the larger cross-section and the suppression of the abundance. However, for
particles of mass m � mZ , the cross-section decreases with particle mass as m�2, instead of increasing with m

2. This implies

⌦ h
2
'

⇣
m 

1 TeV

⌘2
, m  3 TeV . (1.73)

For the cold relics, the bound is stronger, because of the non-relativistic freeze-out, and this gives a lower limit for the massive cold
relics, called the Lee-Weinberg bound. Figure 1.3 summarizes the cosmological bounds on viable models of WIMPs.
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1.3.2 Relic Density of Decaying Particles

If a particle is unstable and decays into other particles, the Boltzmann equation can be supplemented by an extra term for such decay.
The number density of decaying particles is always governed by the half-life ⌧ , beyond which the number density is exponentially
suppressed as

n(t) / exp[�t/⌧ ] , (1.74)

but below which the particles behave like stable particles.
If the decay product involves photons, such particles are subject to more stringent observational constraints. A particle decay into

photons often involves strong Gamma rays, and these photons should be hidden from observations by preventing the particles decay
with longer life-time or by themalizing them. It takes a while to thermalize Gamma ray photons with background radiation, such that
the decays must happen early enough.

1.4 Big Bang Nucleosynthesis

Where do we come from? To this philosophical question, here we find some physical answers. The basic structural unit of life is
cells that contain lots of molecules, and molecules are electrically neutral groups of atoms held by chemical bonds. Atoms form the
smallest unit of the (ordinary) matter, and they are composed of one nucleus and several electrons bound to the nucleus. Where do
they come from? Normal stars at the core fuse lighter elements like hydrogen and helium, and more massive stars synthesize carbon,
oxygen, and silicon, yielding irons, beyond which no net energy is gained through nuclear fusion. Heavier elements are further
generated by neutron captures in supernova explosions. However, observations show that hydrogen and helium are ubiquitous in the
Universe with almost constant ratio 75% hydrogen and 24% helium by mass. Indeed, the origin of those elements are primordial and
global, rather than localized stars.

1.4.1 Proton and Neutron Abundances

All nuclei are made of protons and neutrons, and they are characterized by its charge number Z (number of protons) and the atomic
mass A (number of protons and neutrons). Given their mass mp ' mn ' 940 MeV, protons and neutrons are non-relativistic at
t ' 10

�6 sec (T ' mp) with their number densities

nn,p = gn,p

✓
mn,pT

2⇡

◆3/2

exp


�
mn,p � µn,p

T

�
, (1.75)

and they remain in thermal equilibrium until T ⇠ 0.8 MeV via low-energy weak interactions

p+ e$ n+ ⌫e , n+ ē$ p+ ⌫̄e , n$ p+ e+ ⌫̄e . (1.76)

Hence the ratio of the number densities in thermal equilibrium is

nn

np

=

✓
mn

mp

◆3/2

exp


�
mn �mp

T
+

µn � µp

T

�
' exp


�
Q

T

�
, Q := mn �mp = 1.294 MeV , (1.77)

where we ignored the difference in the chemical potential µn � µp = µe � µ⌫ ' 0 in the weak interactions. At temperature T � Q,
the ratio of the number densities is unity, but it continuously decreases at lower temperature (T < Q), because neutrons are slightly
heavier than protons. However, due to the neutrino decoupling at T = 1 MeV, the weak interactions become inefficient to keep
protons and neutrons in thermal equilibrium, such that the ratio freezes out at T ⇠ 0.8 MeV

nn

np

⇠ exp


�
1.294

0.8

�
'

1

5
. (1.78)

Free neutrons can further �-decay into protons at any time with its half-life ⌧ = 887± 2 sec (' 15 min), which could have exhausted
neutrons in our Universe. However, before they decay into protons, most neutrons are indeed captured in deuterium and helium
nuclei, where they are stable.2 By the time the big bang nucleosynthesis is active, the ratio becomes

nn

np

'
1

7
at t ' 300 sec . (1.79)

2Sometimes, Pauli’s exclusion principle is invoked for such stability, but neutrons do decay in nuclei, when energetically favorable. In nuclei, all the neutrons and
protons form a system, in which protons typically occupy higher energy state due to electromagnetic repulsion, such that nuclei with somewhat more neutrons than
protons are stable, because converting one neutron into a proton would need more energy. Of course, if even more neutrons are present in nuclei, they inevitably
occupy higher energy state than protons, and �-decay is then energetically favorable.
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Figure 1.4: Average binding energy of nuclei per proton. With the steep increase in the binding energy, nuclear fusion is an efficient
way to generate energy up to iron, beyond which the binding energy decreases. Nuclear fission can be used for elements heavier than
irons to extract energy, though not as efficient as nuclear fusion.

1.4.2 Nuclear Synthesis of Heavier Elements

With numerous protons and neutrons, they can be forged to form heavier nuclei, but they are dissociated immediately by energetic
photons, until the Universe cools below their binding energy (e.g., 2.22 MeV for deuterium). In thermal equilibrium, the abundance
of nuclei with atomic mass A with charge Z is

nA = gA

✓
mAT

2⇡

◆3/2

exp


�
mA � µA

T

�
= gA

✓
mAT

2⇡

◆3/2

exp

h
�
mA

T

i h
exp

⇣
µp

T

⌘iZ h
exp

⇣
µn

T

⌘i(A�Z)

, (1.80)

where we used the relation for the chemical potential

µA = Zµp + (A� Z)µn . (1.81)

With the same formulas for the proton and the neutron number densities in equilibrium, we can remove the chemical potentials µp

and µn in favor of np and np to express

nA =
gAA

3/2

g
A

N

n
Z

p
n
A�Z
n

✓
mNT

2⇡

◆ 3
2 (1�A)

exp

✓
BA

T

◆
, gN := gp = gn = 2 , (1.82)

where we approximated mN := mp ' mn and mA ' AmN , and defined the binding energy of nucleus

BA := Zmp + (A� Z)mn �mA . (1.83)

In the presence of heavier elements, the baryon number density is

nb := np + nn +

X

i

AinA,i , (1.84)

and the mass fraction of each nucleus A:

XAi :=
AinA,i

nb

, 1 =

X

i

XA,i . (1.85)
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Figure 1.5: Primordial abundances of light elements as a function of the baryon-to-photon ratio.

The baryon number density includes free neutrons and protons, but also accounts for those inside nuclei with weight Ai, i.e., it is
the total number densities of protons or neutrons, while the mass fraction shows how many nuclei are captured in the nucleus. The
number density of nucleus A can then be re-expressed by using n� in Eq. (1.20) as

XA =
gA

2
A

5/2


4⇣(3)
p
2⇡

�A�1
X

Z

p
X

A�Z
n

⌘
A�1

⇣
mN

T

⌘ 3
2 (1�A)

exp

✓
BA

T

◆
, (1.86)

where we defined the baryon-to-photon ratio:

⌘ :=
nb

n�
= 2.72⇥ 10

�8
!b

✓
Tcmb

2.73 K

◆�3
⇡ 5⇥ 10

�10
. (1.87)

As the temperature of the Universe cools below the binding energy, nuclei with atomic mass A can form, and for the mass fraction
to be non-negligible (XA ' 1), the temperature has to be below

lnXA ' 0 , TA ⇡
|BA|

(A� 1)
⇥
| ln ⌘|+

3

2
ln(mN/TA)

⇤ . (1.88)

The deuterium 2D has the lowest binding energy BD = 2.22 MeV, but the formation of deuterium takes place only when the
temperature of the Universe is an order-of-magnitude below BD ' 2⇥ 10

10 K due to large number of photons. The high-energy tail
(Wien) of the photon distribution is sufficiently large enough to destroy deuterium nuclei, until it reaches TD ⇡ 10

9 K (t ⇠ 100 sec).
This is the beginning of the Big Bang Nucleosynthesis (BBN).

Once the nucleosynthesis begins, many channels of nuclear reaction take place. However, since the number densities of nuclei in
the Universe are quite low at the time of BBN, only two-body interactions are possible, and the fact that there are no stable nuclei with
atomic mass 5 or 8 implies that no elements heavier than lithium 7Li (3 protons) can be produced. The next element in periodic table
is 9Be (4 protons). In contrast, at the core of massive stars, where the densities are even higher, many-body interaction channels are
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allowed, and even a short-lived 8Be that formed through 4He-4He collision can quickly capture another 4He to form a stable carbon
12C, allowing further nuclear reactions to proceed.

Since the binding energy of deuterium is the lowest, the formation of deuterium nuclei acts as a bottleneck for nucleosynthesis, as
heavier elements are already allowed to form by TD. Consequently, almost all the deuterium nuclei (or free neutrons) are processed
to form helium nuclei, and the mass fraction of helium is

Y := X4He '
4(nn/2)

nn + np

=
2(nn/np)D

1 + (nn/np)D
⇡

1

4
,

✓
nn

np

◆

D

⇡
1

7
, (1.89)

where the subscript D indicates the time of deuterium formation, when helium nuclei are yet to form, i.e., nb = nn+np. Observations
of the helium mass fraction is about 24% everywhere, and the confirmation of this prediction for He is one of the success of the Big
Bang model in the early days.

The predictions of primordial nucleosynthesis and their observational confirmation is of course important. In particular, it helps
constrain ⌘ or the baryon density !b. However, it is in fact not easy to determine the primordial abundances from observations,
because the observed abundances have been re-processed through stars and other astrophysical events. In the following we give a
brief summary of the present observational situation (?):

• 4He: With its large abundances, it is relatively easy to make observations, and the abundances are often estimated from ionized
HII clouds by using the recombination lines. Since 4He can be produced in stars, the estimates are the upper bound of the
primordial abundances. In order to reduce this contamination, observers often target metal-poor gas clouds. In reality, obser-
vations are made as a function of metalicity, and the helium abundance is estimated by extrapolating it to zero-metalicity. The
current estimate is Yp = 0.24± 0.01, but its abundance is relatively insensitive to ⌘.

• 2D: The deuterium abundance is estimated from UV absorption lines in the interstellar medium or in Ly↵ clouds at high
redshifts. Since deuterium is rather weakly bound, it is easy to destroy them, but at the same time, it is hard to produce in
stars. Therefore, the deuterium estimates serve as a lower bound. In particular, Ly↵ clouds at high redshifts are quite close to
primordial. The local estimates give [D/H]' 1.6⇥10

�5, while the estimates from Ly↵ clouds yield 2.82±0.53⇥10
�5. Since

the deuterium abundance sensitively changes with !b, its measurements are crucial in determining !b.

• 3He: The abundance of 3He can be measured by using meteorites and the solar wind in the solar system or by measuring the
strength of the 3He+ hyperfine transition line in HII regions. Old meteorites should contain material at the formation of the
solar system. Since 2D can be burned to 3He in the Sun, the sum of (D+3He) is a good measure of the pre-solar abundance
from the solar wind. While 3He can be destroyed at the core of stars, it is much harder than 2D. The current measurements
from the Solar system give an upper limit on [(D +

3
He)/H] < 10

�4.

• 7Li: Estimates of the 7Li abundance come from stellar atmospheres. Since 7Li is quite fragile, they are depleted if transported
deeper into the centers of stars, which results in significant variations in observations. With weak convection, the estimates
from metal-poor stars are believed to be more robust and close to the primordial abundances. The current observations yield
[
7
Li/H] ' (1.5± 0.4)⇥ 10

�10.

With precise determination of T� and !b from CMB measurements, the predictions of BBN are completely fixed under the
standard model of particle physics and cosmology, and they are used for consistency check with observations, in particular, of the
abundances of 4He and 2D. On the other hand, the situation with 3He is too complex for a meaningful comparison to be possible,
and the results for 7Li appear to disagree within uncertainties. This discrepancy reflects observational challenges in inferring the
primordial abundances, but it might imply that the early Universe might have been different from what the standard model physics
predicts.

1.5 Recombination and Matter-Radiation Decoupling

1.5.1 Recombination of Hydrogen Atoms

Once the nucleosynthesis is completed, the Universe consists of protons, helium nuclei, electrons, photons, decoupled neutrinos, and
a trace amount of other elements such as 2D, 3He and so on. All particles except photons and neutrinos are already non-relativistic,
and they stay in thermal equilibrium mainly through the electromagnetic interactions. As the Universe cools, the next cosmological
event is to form neutral hydrogen atoms by combining free electrons and protons, which is called the cosmic recombination.

Assuming the thermal equilibrium and µH = µp + µe, we can derive the hydrogen number density in the exactly same way to
Eq. (1.82) as

nH =

✓
gH

gpge

◆
npne

✓
meT

2⇡

◆�3/2
exp

✓
BH

T

◆
, gH = ge = 2 , gp = 1 , (1.90)
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where the binding energy of hydrogen atoms is

BH := mp +me �mH = 13.6 eV . (1.91)

Mind that the degeneracy factor for electrons in neutral hydrogen atoms is gH = 2n
2
' 2 and that for electrons in ionized protons

is gp = 1. Ignoring helium or any other elements nb ' np + nH and assuming ne = np, the hydrogen number density can be
re-expressed as

nH

nb

=

✓
ne

nb

◆2

⌘ n�

✓
meT

2⇡

◆�3/2
exp

✓
BH

T

◆
. (1.92)

By defining the ionization fraction (or how many free electrons), we arrive at the Saha equation for the ionization fraction in thermal
equilibrium:

Xe :=
ne

nb

=
np

nb

 1 ,
1�Xe

X2
e

=

r
32

⇡
⇣(3) ⌘

⇣
me

T

⌘�3/2
exp

✓
BH

T

◆
. (1.93)

Once the Universe cools below the binding energy BH , the hydrogen atoms can form, but again due to the large number of high-
energy photons at a given temperature compared to baryons, the formation of neutral hydrogen atoms is further delayed. If we define
the completion of the recombination process as Xe = 10%, the Saha equation states

✓
3/2

rec
exp

✓
13.6

✓rec

◆
=

0.9

0.01

 r
32

⇡
⇣(3) ⌘

!�1 ⇣
me

1 eV

⌘3/2
= 3.2⇥ 10

17
(!b)

�1
, (1.94)

where we defined
✓ :=

T

1 eV
'

1 + z

4250
. (1.95)

A numerical computation yields that the recombination takes place at

1 + zrec ⇡
1367

1� 0.024 ln!b

⇡ 1249 , Trec = 0.3 eV⌧ BH , (1.96)

a lot lower temperature than BH .
There are a few subtleties in the cosmic recombination. In a typical gas cloud, the recombination process takes place by a direct

capture of free electrons to the ground state (case A recombination) or cascades of electronic transition to the ground state (case B
recombination). Both of which are inefficient in the cosmic recombination, because both processes result in high energy photons that
ionize hydrogen atoms again. The main channel in the cosmic recombination is a forbidden transition with � ⇡ 8.23 sec�1, so called,
the two-photon decay, in which two photons are emitted by an electronic transition 2s ! 1s, splitting the energy of Ly↵. The other
process is the cosmological redshift of Ly↵ photons. The detailed numerical computation shows that the ionization fraction Xe = 1

at z � 2000 decreases as the Universe cools, and it freezes out to a value Xe ' 10
�3 at z  200.

1.5.2 Decoupling of CMB Photons and Baryons

• Decoupling of CMB photons.— The baryon-photon plasma (including leptons) maintains the equilibrium via Coulomb interactions
between photons and free electrons. At this low energy scales, the interaction is mainly elastic, and its cross-section is described by
the Thompson scattering as

�T :=
8⇡

3
r
2

e
' 6.651⇥ 10

�25
cm

2
, re :=

e
2

mec
2
= 2.818⇥ 10

�13
cm , (1.97)

where the radius of an electron is defined in terms of the Coulomb potential. The Thompson scattering describes a classical collision
of ionized electrons. With higher mass, the Thompson scattering cross section for protons is smaller by (me/mp)

2
= 10

6 and
negligible, but the strong Coulomb interactions between free electrons and protons also keep the protons in thermal equilibrium. As
the Universe cools and free electrons recombine to form neutral hydrogen atoms, the interaction rate in the baryon-photon plasma
goes down:

ne = Xe ⌘ n� , �� = ne�T c = 1.01
p
!b✓

9/4
exp


�
6.8

✓

�
sec
�1

, (1.98)

and the photons are released (or decoupled) from the plasma, when the interaction rate becomes lower than the expansion rate:

H ' H0

p
⌦m(1 + z)

3/2
= 8.98⇥ 10

�13p
!m ✓

3/2
sec
�1

, (1.99)
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where we assumed that the Universe is deep in the matter dominated era. The decoupling takes place at

✓
�1
dec
⇡ 3.927 + 0.074 ln

✓
!b

!m

◆
, Tdec = 0.26 eV , 1 + zdec ' 1100 , (1.100)

soon after the recombination of neutral hydrogen atoms takes place. Another way of understanding the decoupling of photons is to
compute the optical depth:

⌧(z) :=

Z
z

0

dz
c dt

dz
ne�T ⇡ 0.37

⇣
z

1000

⌘14.25
, (1.101)

where the numerical values are approximations to the best-fit model prediction. The Universe is fairly transparent at low redshift, and
it becomes quickly opaque around zdec. A simple analytic calculation shows that the observed CMB photons are indeed emitted at
the peak of the visibility function defined as

P (⌧) := ⌧e
�⌧(z)

. (1.102)

which peaks sharply at z ' 1067 with a width �z ' 80. In other words, before the decoupling, the CMB photons were in thermal
equilibrium with baryons via Thompson scattering, and they are un-polarized and opaque. However, within a narrow redshift width,
they are released from the baryon plasma, and they are weakly polarized via last scattering.

• Decoupling of baryons.— Now we consider the decoupling of baryons from the baryon-photon plasma. While the photons are
released at zdec ' 1100, the baryons are kept in thermal equilibrium long after the decoupling of photons, due to large number of
photons per baryons. In general, the matter components cool as Tm / 1/a

2, faster than the photons, but because of the tight coupling
it goes as Tm ⇠ T� / 1/a until it is released from the photon plasma, i.e., energy is transferred to the baryon plasma from the photon
plasma by the Compton scattering of high-energy photons. For the decoupling of photons, the relevant interaction rate was �� , and
no energy transfer was made. For the decoupling of baryons, however, we have to account for this energy transfer to compute the
proper interaction rate �e.

The typical average energy transfer due to one Compton scattering of high-energy photons is given by

�E =
4

3

⇣
ve

c

⌘2
Ē� = 4

✓
kTe

mec
2

◆
u�

n�
, Ē� = h⌫̄ =

u�

n�
, (1.103)

and with larger number of photons n� , the energy transfer rate per unit volume is then

d✏

dt
= �E n��� = 4ne�Tu�

✓
kTe

mec

◆
. (1.104)

Since free electrons are tightly coupled with free protons, this energy transfer is quickly shared with protons of typical energy density

✏m =
3

2
(ne + nb)kTe . (1.105)

Therefore, the proper interaction rate for electrons to be compared to the expansion rate is then

�e =
1

✏m

d✏

dt
= 8.9⇥ 10

�6
✓

Xe

1 +Xe

◆
✓
4
sec
�1

, (1.106)

and the baryon plasma decouples at

1 + z = 6.8

✓
Xe

1 +Xe

◆� 2
5

!
1/5

m
⇡ 150 . (1.107)

Note that the Compton scattering conserves the number of photons, such that it can lead to a spectral distortion. However, the
small baryon-to-photon ratio makes it negligible for the photon plasma. The free-free emission and absorption (Bremsstrahlung) can
create and destroy photons, such that it is needed to thermalize. However, this process is inefficient at T  10

4 eV.
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