
3 Probes of Inhomogeneity
In cosmology, the initial condition is set in the early Universe with Gaussian random fluctuations in Fourier space, as the
quantum fluctuations in vacuum are stretched beyond the horizon scales during the inflationary epoch. Since the Gaussian
distribution is completely specified by the variance, the power spectrum contains all the information in the early Universe.
However, the nonlinear growth in the late time complicates the interpretations. Here we focus on the linear theory and
study various ways to measure the two-point statistics.

3.1 Basic Formalism

3.1.1 Two-Point Correlation Function and Power Spectrum

• 3D information.— Suppose that we use some cosmological probes such as galaxies and measure, say, the matter density
fluctuation �. Now imagine we have measurements of such probe over all positions x. We can then measure the two-point
correlation function ⇠(r) and its Fourier transform, the power spectrum P (k):
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and the variance is
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where �2

k
is the dimensionless power spectrum and it is the contribution to the variance per each log k.

Note that different Fourier modes are not correlated in the initial condition and the power spectrum characterizes the
Gaussian distribution at each Fourier mode.1 Therefore, using cosmological probes, we need to measure the distribution
map �(x) and compute the two-point correlation function or the power spectrum.

• 1D information.— Spectroscopic measurements of distant quasars yield the density fluctuations of neutral hydrogens
along the line-of-sight. In this case, we probe the density fluctuation, but only in terms of the line-of-sight separation, say,
z-direction. Given the 1D map, we can measure the 1D correlation function, and it is related to the power spectrum as
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where the separation vector is z = zẑ along the line-of-sight direction. We can also define 1D power spectrum that is a
Fourier counterpart of the 1D correlation function:
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where we again assumed that the 3D power spectrum is isotropic. The 1D power spectrum is the projection of the 3D
power spectrum over 2D Fourier space. For sufficiently high k, it is largely one-to-one, though it has bias (called aliasing)
on low k. This relation can be inverted as

P (k) = �2⇡
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P1D(k) , (3.5)

and the dimensionless power spectrum in 1D is
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1However, as we studied in Section 2, the nonlinear evolution results in the mode coupling.
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• 2D information.— Though the distance in cosmology is difficult to measure, it is easy to have 2D information on the
sky. We define the 2D power spectrum in a similar way as the Fourier counterpart of the 2D correlation function:
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where k
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2
y . The 2D power spectrum is the projection over 1D Fourier space, and its similar relation to the 3D

power spectrum exists. This relation can be again inverted by using the (non-trivial) Abell integral as
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and the dimensionless power spectrum in 2D is then
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The projection-slice theorem says Fourier transformation of the projection is the slice of its Fourier transformation. It
means exactly what we derived here. A similar relation holds in configuration space. The projected correlation function
is related as
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3.1.2 Angular Correlation and Angular Power Spectrum

We briefly covered the statistics in a flat space. However, the sky is round, and we can only make observations by measur-
ing the light signals. The cosmic microwave background anisotropies, for example, are measured only as a function of the
angular position on the sky at the Earth. In cosmology, we often have angular information, but no distance measurements.
Since this measurement �(✓̂) is defined on a unit sphere, we can decompose it in terms of spherical harmonics as
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where we have discrete sum, instead of integral in Fourier space. The reality condition for � imposes
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Similar to the case in 3D, we can define the angular correlation function and its Fourier counterpart:
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where we used the relation

halma
⇤
l0m0i = �ll0�mm0Cl =

X

m

|alm|2
2l + 1

�ll0�mm0 , (3.14)

and the Legendre polynomial is related to the spherical harmonics as
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The angular power spectrum can be obtained as
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3.1.3 Flat-Sky Approximation

When the area of interest is relatively small in the sky, we can use the flat-sky approximation, and it often overlaps with the
distant-observer approximation, in which the observer is so far away that the position angle is virtually constant, compared
to their relative positions. In this case, the angular correlation and its power spectrum are closely related to those in flat
space.

Now consider the 2D correlation function ⇠2D and 2D power spectrum P2D(k):
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where we used x? = r✓ and defined the (flat-sky) angular power spectrum Pl. Note that the 2D power spectrum is di-
mensionful, but the angular power spectrum is dimensionless. Given the radial distance r, the 2D correlation function ⇠2D

can be considered as the angular correlation function, and assuming that the angular power spectrum is independent of its
direction, we can further simply the relation:
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where J0 is the Bessel function. The (full-sky) angular power spectrum is then obtained as
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where we manipulated the Bessel function for l � 1 and ✓ ⌧ 1
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The angular quantities such as w(✓) and Cl are defined on a unit sphere, whereas the 2D quantities such as ⇠2D and P2D

are defined on a 2D flat space. Hence, the former is related to each other via spherical harmonics, and the latter via
Fourier transformation. But they are defined in a way that the angular power spectrum Cl and its flat-sky counterpart Pl

are equivalent in the limit of small sky.

3.1.4 Projection and Limber Approximation

We often measure some angular quantities in cosmology, but they are often the projection of the 3D quantities. For
example, one can measure the angular map in a given galaxy survey, but the angular quantity �2(✓) we measure indeed
derives from the 3D quantity �(x), but projected along the line-of-sight direction with some weighting W (r):
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The weight function is normalized to unity and it is often parametrized in terms of redshift as
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where the weight function can be dimensionful, depending on its parametrization. The angular correlation is then
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where we assumed the flat-sky approximation. The angular power spectrum is

Pl =

Z
d
2
✓

(2⇡)2
e
�il·✓

w(✓) =

Z
dr1 W (r1)

Z
dr2 W (r2)

Z
dkz

2⇡
e
�ikz(r2�r1)

1

r
2

1

P

✓
k? =

l

r1
, kz

◆�
. (3.24)

25



AST513 Theoretical Cosmology JAIYUL YOO

Since we work in the flat-sky regime (or the distant observer), the radial distance is far larger than the transverse separation
r � r✓. Hence, we have the separation of scale in Fourier space
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and the power spectrum can be approximated as
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Keeping the leading term in the power spectrum, we can integrate over kz and approximate the angular power spectrum
as
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This is sometimes called the Limber approximation. When the window function is sufficiently broad compared to the
coherent length scale of the correlation, the Limber approximation is very accurate and useful. Its relation to the angular
correlation is
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where we defined the kernel
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3.2 Matter Power Spectrum

The evolution equation (2.19) for the matter density growth yields simple solutions for the matter-dominated era (MDE)
and the radiation-dominated era (RDE):

Dmde / a , Drde / a
2
, (3.30)

where the solution can be verified by direct substitutions. The growth in MDE is scale-independent, such that the pertur-
bations on all scales grow equally in proportion to a. However, the growh in RDE is a bit different. In fact, the evolution
equation is not valid in RDE, as we derived the equation by assuming the presureless medium, whereas the Universe in
RDE is dominated by radiation (with large pressure). On small scales, the matter density cannot grow due to the radiation
pressure, so no growth during the RDE, but on large scales (larger than the horizon scale in RDE) the evolution equation
is valid, as the effect of pressure is negligible.2

Therefore, the matter density fluctuations on large scales can continuously growh throughout the periods of RDE and
MDE, while those on small scales cannot grow, once they enter the horizon during RDE (remember that all modes were
outside the horizon after inflation). So the scale of comparison is naturally the equality scale kEQ, where the epoch of
equality is defined as ⇢̄m = ⇢̄r at tEQ (or zEQ ' 3000). The modes larger than the equality scale kA < kEQ stay outside
the horizon during RDE, so that they continue to grow until today:
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where ti is the initial time after inflation and t0 is the present time. Similarly for the mode kEQ, and hence the ratio of the
power spectra at kA and kEQ is
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For a mode kA < kEQ, the power spectrum is essentially primordial, up to the amplitude.

2For calculations outside the horizon, we need relativistic equations, so the validity of our Newtonian equation in this regime is a bit of coincident.
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The modes smaller than the equality scale kB > kEQ start outside the horizon during RDE and grow for some time.
However, after they enter the horizon during RDE, their growth freezes, until the Universe becomes MDE, so that their
growth is
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where a? is the time at which the modes kB enter the horizon, i.e., kB = H(t?). During RDE, the Hubble parameter H is
proportional to a

�2, and the conformal Hubble parameter H := aH . Therefore, the scale factor at the horion crossing is
a? / 1/kB , and the ratio of the power spectra at kB and kEQ is then
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Compared to the initial condition, the growth in the matter power spectrum is suppressed on small scales due to the
radiation pressure.

In fact, the dark matter density can still grows in RDE on small scales, as they do not feel the radiation pressure.
However, the growth is indeed slowed due to the rapid Hubble expansion in RDE, so that the growth is only logarithmic,
and the suppression on small scales is in fact (ln k/k2)2, instead of (1/k2)2. This growth of dark matter density during
RDE is important for structure formation today. CMB observations show that �T/T̄ ⇠ �b ⇠ 10

�5 at z = 1100. According
to linear theory, this small matter density fluctuation can only grow by D(z = 1000)/D(z = 0) ⇡ 1000 to �b ⇠ 0.01,
which is not enough to form any nonlinear structure today. With dark matter already growing for a while, baryons can
catch up quickly, once released from CMB.

3.3 Peculiar Velocity

3.3.1 Observations of Peculiar Velocities

The distant objects such as galaxies are receding from us due to the Hubble expansion, and this expansion (or the receding
velocity v) is measured by the redshift z of the known line-emissions from the distant objects:

1 + z =
�obs

�rest

. (3.35)

If we interpret this measurement as the Doppler effect, we obtain the receding velocity

1 + z ⇡ 1± v

c
, v ⌘ cz . (3.36)

What happen to the objects at z > 1? We can use the relativistic Doppler effect to obtain the receding velocity less than
the speed of light, but this velocity is not really the physical velocity of the objects. The dominant contribution to the
redshift is indeed the expansion of the Universe.

However, in addition to the Hubble expansion vH , these objects are also moving, and this motion is referred to as
the peculiar motion vp. Due to the peculiar motion, the Doppler effect also contributes to the receding velocity, and the
receding velocity can be written as

v = vH + vp , vH = Hd = Hr , (3.37)

where the object is assumed to be at the physical distance d (or comoving distance r). The redshift measurements (or
the receding velocity) yield only the radial component of the receding velocity. The tangential peculiar motion can be
measured. However, since this requires measurements of the angular motion of the distant objects over a long time, it is
practically limited to the nearby objects such as stars in our own Galaxy. The measurements of the radial peculiar velocity
also requires precise measurements of the distance d, which is very difficult in cosmology. For example, 10% error in the
distance measurements at d = 50 h

�1
Mpc yields the error of 500 km s

�1 in the peculiar velocity measurement. There-
fore, the peculiar velocity measurements are also limited to the low-redshift objects.

• receding velocity at z > 1, gauge ambiguity, SN Ia or SZ measurements
• HW: derive Eq. (3.36) from Eq. (3.37)

27



AST513 Theoretical Cosmology JAIYUL YOO

3.3.2 Linear Theory

In Chapter 2, we learned that the velocity divergence is related to the density fluctuation:

✓ ⌘ �1

a
r · v = Hf� . (3.38)

Ignoring the vector perturbation, the velocity can be expressed in terms of the velocity potential U as
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� . (3.39)

In Fourier space, the inverse Laplacian can be readily manipulated, and the velocity vector becomes

U(k) = �Hf

k2
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k2
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where we suppressed the time-dependence, for example,

�(k) = D(t)�̂(k, to) . (3.41)

3.3.3 Two-Point Correlation of the Peculiar Velocities

Given the peculiar velocity (vector) field, we can compute the two-point correlation function of the peculiar velocities at
two different points:
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and we defined two velocity correlation functions,  k along the connecting direction and  ? perpendicular to it:
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If we define the multipole correlation function of the matter as

⇠
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we can show that the velocity correlation functions are
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The two-point correlation function of the velocity inner product is then

hv(x) · v(x+ r)i =  k(r) + 2 ?(r) , (3.48)

and its variance is
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Since the peculiar velocity is often measured along the line-of-sight direction only, one-dimensional variance is often used
in literature:
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3
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For the same reason, the two-point correlation function of the line-of-sight velocities is often measured, and it is related
to the velocity correlation  ij as

hV1V2i = n̂1in̂2j ij , V1 := n̂
i

1vi(x1) , n̂1 = x1/|x1| , (3.51)

where n̂1 is the line-of-sight direction for the position x1.
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3.4 Redshift-Space Distortion

3.4.1 Redshift-Space Power Spectrum

In cosmology, we rarely know the physical distance to any of the cosmological objects, but we can measure their redshift z
with relative ease. The redshift-space distance s is then assigned to the object as

s =

Z
z

0

dz
0

H
. (3.52)

As we discussed in Section 3.3.1, the observed redshift is the sum of the Hubble expansion and the peculiar velocity.
However, since it is measured in terms of wavelength, it is more convenient to express it as

1 + z ⌘ (1 + z̄) (1 + �z) , z = z̄ + (1 + z̄)�z , (3.53)

where the redshift z̄ in the background would represent the comoving distance to the object in the background
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, (3.54)

and the peculiar velocity or any contributions to the observed redshift other than the Hubble expansion is described by the
perturbation �z:

�z = vp + · · · . (3.55)

To the linear order in perturbations, we can expand the redshift-space distance as
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where we replaced z̄ with z at the linear order. Despite the distortion in the radial distance, the number of galaxies
we measure in a given area of the sky remains unaffected: ng(s)d

3
s = ng(r)d

3
r. Therefore, the observed galaxy

fluctuation �s in redshift-space is related to the real-space fluctuation �g as
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This relation is exact but assumes that the redshift-space distortion is purely radial, ignoring angular displacements.
One can make a progress by expanding equation (3.57) to the linear order in perturbations, and the redshift-space

galaxy fluctuation is then
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where the selection function ↵ is defined in terms of the (comoving) mean number density n̄g of the galaxy sample as
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By adopting the distant-observer approximation (r ! 1) and ignoring the velocity contributions, a further simplification
can be made:
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where we used the linear bias approximation �g = b �m and the cosine angle between the Fourier mode and the line-of-
sight direction is µk = ŝ · k̂. The galaxy power spectrum in redshift-space is then readily computed as

Ps(k, µk) = (b+ fµ
2

k
)
2
Pm(k) . (3.61)

This redshift-space distortion effect was first derived by Nick Kaiser in 1987. Due to our redshift measurements as the
radial distance, the Doppler effect affects our observation of the number density in redshift-space, such that the galaxy
power spectrum becomes enhanced along the line-of-sight direction, representing the infall toward the overdense region.

• random motion on small scales, growth rate of structure
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3.4.2 Multipole Expansion

The Kaiser formula for the redshift-space power spectrum indicates that the power spectrum is anisotropic, i.e., it depends
not only a Fourier mode k, but also its direction. So, it is often convenient to expand Ps(k, µk) in terms of Legendre
polynomials Ll(x) as
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and the corresponding multipole power spectra are
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With its simple angular structure, the simple Kaiser formula in equation (3.61) is completely described by three multipole
power spectra

P
s

0 (k) =

✓
b
2
+

2fb

3
+

f
2

5

◆
Pm(k) , P

s

2 (k) =

✓
4bf

3
+

4f
2

7

◆
Pm(k) , P

s

4 (k) =
8

35
f
2
Pm(k) ,

(3.64)
while any deviation from the linearity or the distant-observer approximation can give rise to higher-order even multipoles
(l > 4) and deviations of the lowest multipoles from the above equations.

The correlation function in redshift-space is the Fourier transform of the redshift-space power spectrum Ps(k, µk).
With the distant-observer approximation the redshift-space correlation function can be computed and decomposed in
terms of Legendre polynomials as

⇠s(s, µ) =

Z
d
3k

(2⇡)3
e
ik·s

Ps(k, µk) =

X

l=0,2,4

Ll(µ) ⇠
s

l
(s) , (3.65)

and the multipole correlation functions are related to the multipole power spectra as

⇠
s

l
(s) = i

l

Z
dk k

2

2⇡2
P

s

l
(k)jl(ks) , (3.66)

P
s

l
(k) = 4⇡(�i)

l

Z
dx x

2
⇠
s

l
(x)jl(kx) , (3.67)

where jl(x) denotes the spherical Bessel functions and the cosine angle between the line-of-sight direction n̂ and the pair
separation vector s is µ = n̂ · ŝ. With the distant-observer approximation, there are no ambiguities associated with how to
define the line-of-sight direction of the galaxy pair, as all angular directions are identical.

3.5 Galaxy Clusters

So far, we discussed the two-point statistics of some cosmological probes. One-point statistics such as the number density
has also important cosmological information.

3.5.1 Spherical Collapse Model

A simple spherical collapse model was developed long time ago to serve as a toy model for dark matter halo formation.
The idea is that a slightly overdense region in a flat universe evolves as if the region were a closed universe, such that it
expands almost together with the background universe but eventually turns around and collapses. The overdense region
described by the closed universe would collapse to a singularity, but in reality it virializes and stops contracting. By using
the analytical solutions for the two universes, we can readily derive many useful relations about the evolution of such
overdense regions.
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Einstein-de Sitter Universe

A flat homogeneous universe dominated by pressureless matter is called the Einstein-de Sitter Universe:

H
2
=

8⇡G

3
⇢m , ⇢m / 1

a3
. (3.68)

This simple model is indeed a good approximation to the late Universe, before dark energy starts to dominate the energy
budget. The evolution equations are

a =

✓
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2/3

=
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⌘0

◆
2

,
t
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, ⌘0 = 3t0 , (3.69)
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1� 1p
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◆
, (3.70)

where the reference point t0 satisfies a(t0) = 1, but it can be any time t0 2 (0,1). At a given epoch t0, one can define a
mass scale
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3
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H
2

0
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2
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2

0
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2

3t0
, (3.71)

Closed Homogeneous Universe

An analytic solution can be derived for a closed universe with again pressureless matter. The evolution equations for a
closed universe are

ã
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2
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where we used tilde to distinguish quantities in the closed universe from the flat universe and the maximum expansion (or
turn-around ãt) is reached at ✓ = ⇡ (H̃t = 0). The density parameters are related to the curvature K of the universe as
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where H0

Spherical Collapse Model

Matching the density equal at some early time, say t0 (i.e., �0 = 0), the time evolution of the overdense region can be
derived in a non-perturbative way as
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3
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where we used
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Therefore, the density contrast �t at its maximum expansion

1 + �t =
9⇡

2

16
' 5.6 , (3.77)

is about a few, while the density contrast �v at its virialization

1 + �v = 18⇡
2 ' 177.7 , (3.78)
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is a few hundreds, under the assumption that the overdensity region virialized at the half of its maximum expansion. Note
that the universe further expands and the background density is reduced by factor 4, until it collapses at tv = 2tt (or
✓ = 2⇡).

Finally, expanding the expressions to the linear order,
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✓
tt

⇡t0

◆
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2
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3

20
✓
2
+ · · · , (3.79)

the density contrast linearly extrapolated to today and its value at virialization are then derived as
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Assuming the non-perturbative expression is valid for |�| ⌧ 1, we have
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Biased Tracer

For any biased tracer �X , the Eulerian and the Lagrangian bias parameters can be written in a series
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where the superscript L represents quantities in the Lagrangian space. If the number density of the objects X is conserved
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the bias parameters are related as
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This simple relation owes to the fact that the spherical collapse model is local in both Eulerian and Lagrangian spaces.

3.5.2 Dark Matter Halo Mass Function

Given the simple spherical collapse model, we would like to associate the collapsed region with some virialized objects
like massive galaxy clusters or dark matter halos. Of our main interest is then the number density of such objects in a
mass range M ⇠ M + dM , and this is called the mass function.

A simple model called, the excursion set approach, was developed: One starts with a smoothing scale R and its
associated mass M . The density fluctuation �R after smoothing with R is very small (�R = 0, if R = 1), and this
region has never reached the critical density threshold �c in its entire history. This implies that there is no virialized object
associated with such mass. One then decreases the smoothing scale (or mass), and looks for the collapsed probability:
Some overdense regions have at some point in the past reached the critical density, while some underdense regions have
not. Therefore, the total fraction Fc of collapse can be obtained by using the survival probability Ps of a given scale, and
it is related to the mass function as

Fc = 1�
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where it is assumed that the mass function only depends on mass and we defined the multiplicity function f through the
relation

⌫ ⌘ �c(z)

�(M)
,

Z 1
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⌫
f = 1 . (3.86)

The task of obtaining the mass function boils down to computing the survival probability and expressing it in terms
of the multiplicity function. The way to find the survival probability at a given mass scale M is to derive the evolution of

32



AST513 Theoretical Cosmology JAIYUL YOO

the density fluctuation as we decrease the smoothing scale R. The reason is that the region may have already collapsed at
a larger mass scale or smoothing scale, and this contribution should be removed in computing the survival probability at
a lower mass scale. The survival probability at n-th step depends on the entire history of the trajectory (non-Markovian
process) as

Ps(�n,�n)d�n = d�n

Z
�c

�1
d�n�1 · · ·

Z
�c

�1
d�1 Ps(�1, · · · �n,�1, · · · ,�n) , (3.87)

it is notoriously difficult to solve, even numerically. However, once we assume that the fluctuations are independent at
each smoothing and are Gaussian distributed (true only in Fourier space at linear order), the trajectory only depends on
the previous step (Markovian process) and the survival probability becomes

Ps(�n,�n) =

Z
�c

�1
d�n�1Pt(�n,�n|�n�1,�n�1) Ps(�n�1,�n�1) , (3.88)

where the transition probability Pt is nothing but a conditional probability. With the boundary condition Ps = 0 at � = �c,
the solution is (derived by Chandrasekhar for other purposes)
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The survival probability for its simplest case is described by a Gaussian distribution, but the second term reflects that there
exist equally likely trajectories around the threshold that have reached the threshold in the past. The collapsed fraction is
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and the multiplicity function is

f(⌫) =

r
2
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⌫ e
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2
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. (3.91)

Of course, this model relies on many approximations, and it is not accurate. However, it provides physical intuitions,
connecting the complicated formation of galaxy clusters and the dynamical evolution of the matter density fluctuations.
In general, numerical N -body simulations are run, and dark matter halos are identified by using some algorithm such as
the friends-of-friends method or its variants to derive the mass function from the simulations.
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