S Solar System Tests of General Relativity

5.1 Schwarzschild Metric

5.1.1 Spherically Symmetric and Static Solution

We will look for the simplest case, in which there exists a time-independent spherical source of mass M at the center. The
metric tensor will be static and spherically symmetric. Due to time reversal symmetry, there is no cross term in the metric.
Consider the metric in a spherical coordinate

ds? = gudztdz” =: —e’M g + N dr? 4 12402 ) G.D
and far away from the source we demand that it reduces to the Minkowski metric

lim v(r) = lim A(r) =0. (5.2)

T—00 r—00

Now we compute the non-vanishing Christoffel symbols:

1 1 1
T =57 Ti = 5¢" /', Ty =5, bo =1, (53)
sin? 0 rf, —r? :1 %, = —sinfcosb % —coth
) ro ro r 9 (20} ) 0¢ )

b =~

where prime represents the derivative with respect to r. The non-vanishing Riemann tensors are then

1 1 1

Ririr = 7€ (20" + 02 =N, Rigrg = 57«6”—%/ : Rygro = §m’ : (5.4)
1 1

Rigry = 57”61}7/\1// sin? 0 , R.grp = 57‘)\’ sin? 0 , Rogop = r? (1 — e”‘) sin? 0 ,

and the non-vanishing Ricci tensors and Ricci scalar are

1 4 1 1 1 N
Ry=-e"M2a"—vN+2+20 ), Ry,=—1V"—=02+ 0N+ 2 (5.5)
4 r 2 4 4 r
1
Ryy = sin? 0 Ry , Ry = *57’6_)\ (V, — )\/) — e +1, (5.6)
1 4 1 2
R=_—¢* {2#’ +2 N+ = <VI - N+ )] + . 5.7
2 r r r
Finally, the Einstein tensors are
1 1 1 1
t __ —-A / _ - /
Gt—ﬁe (1—r/\)—r—2, G;—T—Qe (7“1/+1)—r—2,
1
Gz = Gg = 4—6_’\ (21/ — 2N 4 2r/ 4% — ry')\') . (5.8)
r

According to the Birkhoff theorem, any change in the mass distribution while keeping the spherical symmetry has no
impact on the exterior, i.e., even radially pulsating source (spherically symmetric) maintains the spherically symmetric
solution outside. While we adopted a time-independent metric as our ansatz, we could have started with time-dependence
v(t,r) and A(t,r) and derived from the vacuum field equation that they are indeed time-independent.

5.1.2 Schwarzschild Solution

Outside the spherical source r > ry, there is no source of gravity, and the vacuum Einstein equation G, = 0 can be
solved by the first two components as

(r e_A>/ =1, 0=\N+1, 5.9
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and with the boundary condition we derive the solution

A= —v, e*A:e”=:1—%, (5.10)
where 7, here is just an integration constant. By taking the Newtonian limit:
goo = 100 + hoo , hoo = —2¢ = :Ts ) (5.11)
we can verify that the integration constant is indeed the Schwarzschild radius:
re = 222M — 3km <Aj\j®> : 1T§U ~ 1078 . (5.12)
Hence the Schwarzschild metric is
ds? = — (1 _ %) dt® + (1 _ %) T ? 1 r2ad0? (5.13)
and
N= = —% (1 - %S)*l - —TTS_/:S . (5.14)

The Schwarzschild solution has four singularities, two of which are just due to a spherical coordinate (¢ = 0, 7) and
hence removable. The singularity at » = 0 is physical:

48 M2

RHVPT —
r6

Rpo ; (5.15)

while the singularity at » = r4 is also removable by a change of coordinate. Consider a transformation to a new radial
coordinate p

2
R (1 N 7") 7 (5.16)
4p
and the Schwarzschild metric becomes
2
_Ts 4
ds? — ( 4P> 2 s 2 2 102
§f = dt* + 1+@ (dp* + p=dQ?) . (5.17)

(1+5)

The apparent singularity at r = 7 is mapped into

3 1
p= (41\&) Ts, (5.18)

and the metric is regular at r = 7.

o Killing vectors.— A straightforward computation shows that there exist four Killing vectors in the Schwarzschild metric,
i.e., one time-like
K" o (1,0) (5.19)

and three space-like
K" o« —(0,0,sin ¢, cot 6 cos ¢) , K" (0,0, cos ¢, — cot O sin ¢) , K" « (0,0,0,1).  (5.20)

Three space-like Killing vectors represent SO(3) symmetry in 2D sphere.
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5.1.3 Radial Geodesics in Schwarzschild Metric

e Radial null geodesic.— Consider a null path z; with affine parameter \ along the radial direction (0 = ¢ = 0), where
dot here represents with respect affine parameter. The null condition imposes

(1—r)t—r, = i= 2 (5.21)

The geodesic equation can be solved for the time component

d?ty ¢, dxPdz? . ¢ . .. /. _d .
O:W—i_ pgﬁﬁ:t+0+2I‘trtr+0:t+Vtr:e”a(e”t), (522)
and the solution can be readily obtained as
(1—Ti>£=:<czo, (5.23)
T

where C is an integral constant and we chose A with £ > 0. Mind that this constraint is valid for any geodesic in any
motion. Finally, using the null condition, we obtain

7;2:<1_%)2t-2:@27 (5.24)

where the affine parameter for a null path is arbitrary, and hence C is undefined. For an incoming radial geodesic r < 0,
we derive )
izﬂz—(l—ﬁ> oo — . t=—(r+rs In|r—rs|)+ const. . (5.25)
T dr r r—Tg
The null geodesic makes 45° at far away r > r, but as it approaches 7, the angle becomes steeper |dt/dr| > 1, such
that it takes forever for an observer far away to see the light fall into black hole (infinite redshift), i.e., 7 = 75 is the
horizon. Note that at far away the metric becomes Minkowski, such that the coordinate can be identified as the observer
rest frame at infinity. When a star collapses into a black hole, suppose an observer at the surface of the star keeps sending
signals in a regular time interval. These signals arrive at another observer at infinity, but with increasingly longer interval.
In fact, the intensity of these signals gets redshifted, such that the signals get dimmer as well.
In fact, the Schwarzschild solution we derived is also valid inside 7, as long as r > 0. However, at r < r;, a time-like
and a space-like vectors switch their roles, as apparent in Eq. (5.13), i.e.,

™ = (1,0,0,0), ds® = guTHTH <0 atr>r,, ds® = guTHTH >0 atr <r,.
(5.26)
Hence, a particle trajectory inside 75 cannot be stable at a constant r (space-like trajectory), and it falls inevitably to the
singularity at r = 0.

o Radial timelike geodesic.— Now we consider an incoming particle on a time-like geodesic parametrized by the proper

time T: . d dt
_1:_(1_5),52+<1_E) P2 P o= =2 (5.27)

The time component of the geodesic equation is identical to that for a null geodesic, but at infinity we obtain C = 1, as
the proper time runs exactly the same as the coordinate, under the assumption that the particle is at rest. Plugging this
back to the normalization condition, we derive

2 .
P= L o= (62 =) . P <0, (5.28)

r 3y/rs

and the radial trajectory of a particle indicates that the falling particle will reach the singularity in a finite proper time, and
of course no problem crossing the horizon at r = r;.

44



AST511 General Relativity JATYUL YOO

5.1.4 Relativistic Binet Equation

Having understood the radial motion, we now study a general motion around a spherically symmetric mass, in which the
symmetry of the system imposes that the particle motion should be confined in a plane (¢ = 7/2) due to the angular
momentum conservation. To verify this claim, we consider the geodesic equation for §-component:

d29>\ o dz? dx° .2 . i
OZW—F pgﬁﬁzﬁ—i—;%—stCosG(b , ah = (t,7,0,0)\, (5.29)

and it admits a trivial solution: . ‘
0, = 5 0y, =0, (5.30)

where A is again the affine parameter. This is valid regardless of whether the geodesic is null or time-like. In the same
way, the ¢-component of the geodesic equation at § = /2

d’ ¢ o dxfdx® . 2. - 1/ 9\
0="—5 +Fpaﬁﬁ—¢+;r¢+200t99¢—r—2<r ¢> 1o, (5.31)

yields the angular momentum conservation

d
r2£ = constant =: L . (5.32)
The only remaining component is the radial component of the geodesic equation:
d?ry, dz? dx° 1 . 1 . e d L?
0: ro 7 T s - v—A>A /t2 7)\/'27 -\ 2:77 )\'27 —I/((j2 - 533
e S L R S ) W G ) B

where C from the time component of geodesic equation (5.23) replaces # and the first term in the round bracket accounts
for the first and the third terms in the previous step. The solution to the radial component of geodesic equation is

rs\ L, .o 9 L2_ 0 for m=0
(1_7> (T _C)+7*2_{—1 form;zéO}’ (5.34)

which is indeed the same as the null condition or time-like condition. Since we consider a general motion, C # 1 (particles
can move at infinity).

We take a moment to look at the dynamical equation in Newtonian gravity (no horizon). For a mass spherically
symmetric distribution, a test particle is subject to the same equation (5.32) for the angular momentum conservation in a
planar motion. The dynamical equation is then

L? Ts
FoZ s 5.35
r3 2027 ( )
where dot in this case is of course the derivative with respect to time and r, simply represents 2G M in Newtonian gravity.
It is customary to rewrite the equation in terms of v := 1/r and express it as a function of ¢:

d*u Ts
— =—. 5.36
dg2 T are (5.36)
This equation is called Binet’s equation, and the solution is
u= 2 t¢ cos(¢ — ¢o) or E—1—1—ecos(gz§—<]§) (5.37)
- 2L2 0 0)» r - 0) > .
where cg, ¢¢ are integral constants and they are fixed in terms of semilatus rectum R and the eccentricity e:
212 2coL?
R:= e = 20% (5.38)
Ts Ts

The semilatus rectum is the distance from one focus perpendicular to the major axis, and the eccentricity is the ratio of
focus to the semi-major axis (see the diagram). They are related to each other as

R=all —¢€%|. (5.39)
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In Newtoninan dynamics, the orbital parameters are further related to the energy E as

2 2

. , 1l ) 8EL

prd = — - : - 1 .
2" T Ty T2 0T R LT T

(5.40)

For ¥ = 0 or any motion with L = 0, the eccentricity is one (parabola), and the motion is plunge. For £ < 0, the motion
is an ellipse with e = 0 ~ 1, and for &£ > 0 the motion is a hyperbola with e > 1.
The constraint equation (5.34) for 7 in general relativity can also be arranged in terms of u:

du 0 for m=0
2 2 272 372 _
L <dqﬁ> —C*+u’L reu’L { 4w for m % 0 }, (5.41)

where we used

du du U U
b= — == 542
¢¢> o L rrialid v (5.42)
By taking another derivative with respect to ¢, we arrive at the relativistic version of Binet’s equation:
d*u 3 4 0 for m =0
@ +u— 57451,6 = { 2722 for m 7& 0 s (543)

where the normalization C is removed. For a motion of test particles (m # 0), it is clear that there exists an extra relativistic
contribution in proportion to r,u?, which will become relevant only at small separation (u > 1). Any deviation from a
Newtonian trajectory for a test particle can be computed by treating the relativistic contribution as a perturbation to the
Newtonian orbit.

5.1.5 General Motion and Effective Potential

o Time-like motion.— We analyze a particle motion (m # 0) in a Schwarzschild metric by re-arranging the constraint
equation (5.34):

1 L2 2_1 1
7*24-2[(1_)(14- >_1]:C =&, s+ Ve =€, (5.44)

1
2 r 2 2

where we defined the square bracket as the effective potential:

2 2 2
%31:1[<1—><1+L>—1] s L nlt (5.45)

2 r 2r  2r2 273

The constraint equation in relativistic dynamics is now cast in the usual energy equation in Newtonian dynamics, where
Veg = 0 at infinity and £ is constant. As discussed, the effective potential has the ordinary Newtonian potential, the
centrifugal force, and additional relativistic contribution.

At infinity the effective potential approaches Newtonian, and at r = 7 it becomes Vg = —1/2. For L = 0, the
effective potential is simply Newtonian and attractive, and the radial motion was already discussed. For L # 0, the
Newtonian potential is balanced by the centrifugal force at small separation, as L? /72 becomes larger than r, /r, and the
barrier is infinite in Newtonian dynamics. However, the relativistic contribution ,L? /7> takes over at smaller separation,
and the barrier is finite in relativistic dynamics.

First, we compute the minima of the effective potential:

2\ 2 4
Ve _ 75 [(T_L> 3L2_L2] , (5.46)

dr 274 Ts 2

such thatif L < v/3r s, there exists no minimum, and the effective potential has no barrier (infall). In Newtonian dynamics,
as long as L > 0 there exists a barrier with infinite height, and a particle turns around. With L > /37, two minima exist

2

ry = —
Ts

1+4/1-3 (Z)Ql : (5.47)
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the outer minimum 7, is 7, > 3r, and asymptotically increases with L2, while the inner minimum is bounded by
r_/rs =3/2 ~ 3, decreasing to r_ = %rs with L — oo. As L — v/3rs, both r+ and r_ converge to 3r,, which is called
the inner most stable circular orbit (ISCO). The effective potential at minima is

ors —r_)L? ry — 2rg)L?
Var(r) = &l Vrlry) = -2
Ty

973 <0. (5.48)

The outer minimum is stable and always negative, while the inner minimum can be positive or negative, and Veg(r—) =0
at L = 2r,.

With £ < 0, the orbits are bound, but not closed. For Veg(r—) > £ > 0, the orbits are unbound, i.e., scattering. Those
with 0 < Vog(r—) < & plunge into the center. The bound orbits are not closed, i.e., when a particle returns to rp;, (or
Tmax), the angular area swept by the orbit is larger than 27, and the perihelion changes, known as the precession. Circular
(bound) orbits (# = 0) are possible at r, if Veg(ry) = . If € > Vig, 7 # 0. So, the only possibilities are at r,
but one at r_ is unstable. The smallest radius from the massive object for a circular orbit is therefore r, = 3r; (ISCO).
In classical mechanics, any circular orbits of a test particle are allowed, as the orbital radius shrinks and the test particle
moves faster, but in GR the particle can only move up to the speed of light, providing the minimum radius for the orbit.
For Kerr black holes, the ISCO depends on the alignment of the particle’s angular momentum and the black hole spin, but
between 27, and 4.5r5. Hence, only BHs and neutrons stars have ISCO outside their surface.

o Null motion.— For a trajectory of light, we again start by re-arranging the constraint equation (5.34):

1 5 1 Ts C? 1,
where we defined £ in a similar way and the effective potential is
1 Ts
Weer(r) == — (1 - 7) >0 forr >y, (5.50)
r r

Mind that dots now represent the derivative with respect to an affine parameter. While the affine parameter can be trans-
formed, the products LdA and Cd\ remains unaffected, and hence £ remains invariant under the affine transformation.
In contrast to the time-like trajectory, the light path depends only on &, not on L. A similar analysis can be performed
for Weg (r). The effective potential Wg — 0 at infinity, and Weg(rs) = 0. There exists one maximum:

dWegr 315 — 2r

3 4
4 ) Weﬂ‘ (7" = 27"s> = 7277“? > 0, (551)

dr T

such that if £ < 4/27r2, the light is scattered away, while it plunges in the other case. Similar analysis can be made for
light emitted between 75 and 37/2. A circular orbit is possible at = 3rs/2 with dWg /dr = 0, but it is unstable.

The energy £ for a null path is the inverse length squared, and the length scale corresponds to the impact parameter b
atr = oo:

1 L 26 o do dr
= _—_=_"7T  _ L =} SR b =b, — =-1. 5.52
VE C T (I—n) v dt - R dt ©-32)
At the closest approach rp,;, to the source, i = 0, and hence the solution 7, can be found via
1
West (Tmin) = R (5.53)

5.2 Solar System Tests

5.2.1 Parametrized Post Newotnian (PPN)

Given the mass M and the gravitational constant G, the only dimensionfull quantity we can construct is the Schwarzschild
radius in the metric in Eq. (5.1), and given r;/r < 1, the dimensionless quantities v and A in the metric tensor can be
expanded as

v_.q s Lo, s\ 2 3 A Ts 2
e =1-"4 (8 ’y)(r) +O(rs/7)? =147 = O /r), (5.54)
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where the term linear in 7 is fixed due to the Newtonian limit. Both 3 and -y in the historic convention are two independent
parameters, and they are part of the parametrized post-Newtonian (PPN) description. General relativity predicts

f=v=1, (5.55)

as in the Schwarzschild metric in Eq. (5.13), while Newtonian gravity 5§ = v = 0.
In terms of PPN parameters, several tests of gravity in the Solar system can be summarized as follows.

* The precession of the perihelion of Mercury per orbit yields

_242y—-3 3w 6rGM

o9 3 a(l—e?) - ac?(1 —e?)

~ 42.98" /100 yr , (5.56)

where a = 5.791 x 10'2 c¢m is the semi-major axis and e = 0.2056 is the eccentricity of Mercury, or semilatus
rectum R = a(1 — €2). The Newtonian prediction is again smaller by 2/3.

* The light deflection due to a mass M yields

14\ 2rg AGM . __,( M b\
5¢_< 5 ) o e -V o) e (5.57)

where b is the impact parameter and the Newtonian prediction is a factor two smaller.

 Gravitational time delay of light signal is

1 dror, AGM dror,
st = (250 o fog (e q| — AGMy, (drere) ) (5.58)
2 r2 c3 r2

where r., r,. are the distances of the emitter and the receiver (7. < re, . < 75), T 1S the distance to the sum at the
closest approach, and the typical time delay is

4GM M
G =2 x 107 sec <1 M@> . (5.59)

3
The Newtonian prediction is a factor two smaller.
* Gravitational redshift has been measured with a great precision. However, it is in fact independent of the Einstein
equation, and any metric theory of gravity will predict gravitational redshift.
5.2.2 Perihelion Precession of Mercury

Starting with the relativistic Binet equation (5.43), we treat the relativistic contribution as a perturbation to the Newtonian
solution %, and the perturbation equation is therefore,

d? 3
——0u+du— = rsi® =0. 5.60
e ST (5.60)

Given the Newtonian solution « in Eq. (5.37), the relativistic contribution is

1 2
2’ x 1+ §€2+26COS¢+%COSQ¢, (5.61)
and the solution is
_ 3r3 1, ) e?
6u—8L4 1+§e —{—eqbsmgb—gcoquS , (5.62)
where we set ¢9 = 0. Noting that the contribution in proportion to ¢ is the dominant one, the full solution is then
u—u+5u:27z2{1+ecos¢(1—s)} , (5.63)
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where we used cos ¢(1 — ) ~ cos ¢ + e¢sin¢ - - - and defined

3r2  3r,
= =—. 5.64
©T 42T 2R (.64
Therefore, the precession of the perihelion per orbit is then
_ _3mrs " i B ”

0p = 2me = 7= 0.104" /orbit , d¢ = 42.98" /100 yr , (5.65)

where semilatus rectum is R = 5.5 x 10'2 cm and Mercury orbits 415 times per 100 years with e = 0.2.

The observed precession of Mercury is indeed

§¢ = 5599.74" £ 0.41" /yr , (5.66)

about 100 times larger than the prediction in general relativity. In fact, there exist numerous Newtonian contributions that
need to be taken into account. The observed value is from an Earth-based observatory, and the rotation axis of the Earth
is precessing with respect to an inertial frame, the contribution of which is 5025.64” + 0.50” /yr and is the largest among
various Newtonian contributions. The next leading contributions arise from gravitational perturbations of other planet to
the Sun’s potential. The remaining value that is not explained by Newtonian gravity matches the prediction in general
relativity.

Furthermore, the Sun is not exactly spherical, as it rotates, while our calculation assumes a perfect symmetry. Asym-
metric deviation in gravitational potential is captured in terms of multipole expansion as

M M 2 291
o CM _ ,GM <R) <30089> b (5.67)
r r r 2

where .J5 is a dimensionless measure of the quadrupolar deviation. Given the 1/r3 dependence, it produces the same
precession as the relativistic effect. A precise helioseismological measurement yields, however,

Jy ~ 1077, (5.68)

for the Sun, whose contribution to the precession is negligible.

5.2.3 Light Deflection: Gravitational Lensing of the Sun

Now we derive the trajectory of light propagation. Again, by treating the relativistic contribution as a perturbation,

Pu | d? 3

we first derive the background solution (i.e., no deflection)

u= %sin(qb — o), b=rsin(¢ — ¢p) , (5.70)

which is simply a straight path with the incident angle ¢g, where ¢ is again the angle from the center and b is the impact
parameter. For simplicity, we can set ¢g = 0. As the relativistic contribution in this case is 4> o sin? ¢, the general

solution for the perturbation is
Ts

T
where cq, co are integral constants. The constants c¢; and cy can be fixed by imposing the boundary condition that the
incoming light approaches the Sun from far away (v — 0) with an angle ¢; = 7 + ¢; and it moves away from the Sun
(u — 0) with an an angle ¢, = —¢,:

ou (1 + €1 cos ¢ + ¢osin ¢ + cos? gf)) , (5.71)

—&; Ts —€o Ts

2=a), 0= * %
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where the contribution of ¢ is the second-order and hence ignored. The light deflection from a straight path is then

2rs  AGM
6¢:€i+€g:T:W. (573)
In Newtonian dynamics, massless particles like photons do not feel the gravity. However, a trick can be used to derive
the light deflection angle in Newtonian dynamics. A massive particle moving with v at infinity with impact parameter b

gains a velocity kick from the source
_2GM

ov = ,
b Urel

(5.74)

which is independent of the particle mass. Applying it to massless particles, the deflection angle in Newtonian dynamics

is
2GM

be?

5p =

a factor two smaller than the prediction in general relativity.

(5.75)

5.2.4 Gravitational Time Delay

A spaceship Viking at ry- beyond the Sun sends a signal to the Earth at rg, and we send it back. Since the light path
around the Sun is bent, the closed distance r. of the light path to the Sun is not simply defined in terms of the triangular
configuration. For the time delay, we start with

dt 1 1 —1/2 c? 1

re\ —1
& il(1-%) [62 - Weff(r)] | £= = (576)

where we used Egs. (5.23) and (5.49) for t and 7. The + sign arises, as r decreases towards the Sun and then increases
past the Sun at the center. The total time elapsed for the light communication is

e dt v dt
Atior = 2 / dr |—|+2 / dr |—| , (5.77)
e r e dr
and the excess time delay for one round trip is At minus the time it would take in Minkowski spacetime:
Ot = Atyor — 2 (\/rgB —r2+\/rE — 7"3) ) (5.78)

The integral can be performed by using a perturbative method with expansion r./rg < 1 and r./ry < 1 along the

background trajectory, and we find
AGM 4
5t ~ [log ( rVr@) + 1} . (5.79)

3 2
C T

With two Viking missions from NASA in 1976, Irwin Shapiro performed a time-delay measurement in 1977. The
landers at Mars send signals to the Earth and receive back. Depending on the positions of Mars and Earth, the light travel
time changes, and furthermore the Sun’s gravitational field increases the travel time (or time delay), depending on the
position of the Sun in a triangular configuration. So, the goal is to measure the excess time delay at any given moment,
rather than measure the total time elapsed. A typical round trip of signals takes 41 minutes, and the maximum time delay is
247 usec~ 10~7. The gravitational time delay was confirmed at 1% level in 1977, and it is often called Shapiro time delay.

o Time Machines in relativity.— Box 9.1 in Hartle (2003). Is time machine possible in real world? Yes, in a sense:
forward time machine is possible. A twin paradox shows that if a twin accelerates enough, the twin comes back to the
Earth, when the other twin at the Earth is old (or has already passed away). In a sense, the twin can experience the future
of the other twin beyond age limits of ordinary human being.

As shown, the gravitational field causes time delay, and in the same sense a forward time machine. If an astronaut can
circle around a black hole, the clock in the spaceship slows down significantly (1 — rg/ r)_l/ 2, compared to the clock at
the Earth at infinity. You can receive signals from the Earth beyond age limits of ordinary human being. The fuel cost to
maintain the orbit would be, however, enormous. If you decided for a no-cost option, which is to jump into a black hole,
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you won’t be able to return home, of course, and the duration of your forward time machine is as big as three hours in the
largest black hole.

An interesting possibility is to come up with a shell of mass M, in which there is no gravity and you can build your
home. However, outside the shell the gravitational field is exactly like a black hole, causing the time delay. The mass
required to put in the shell is of course related to the Schwarzschild radius, and in fact there is no material that can stand
the stress.

A backward time machine is in principle not allowed due to causality. However, in general relativity, there exist
possibilities that a time-like curve can be connected to a distant past (closed spacetime geometry), or a warmhole connects
one spacetime point to another. None at the moment is found in nature.
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