
1 Early Universe Physics

1.1 Chronology of the Early Universe

t T → ω
1/4 Redshift Event

10
→43 s 10

19 GeV ↑ Planck energy, Quantum gravity? Big Bang Singularity?
10

→38 s 10
16 GeV ↑ Inflation ends? Grand Unification Scale? Baryogenesis?

10
→11 s 100 GeV 10

15 Electroweak phase transition (spontaneous symmetry breaking)
10

→5 s 150 MeV 10
12 Quark-hadron (QCD) phase transition (Tc ↓ !QCD)

1 sec 1 MeV 6↔ 10
9

εe decoupling (εe ↗ 1 MeV, εµ, εω ↗ 3 MeV )
6 sec 500 keV 2↔ 10

9
eē annihilation

3 min 100 keV 4↔ 10
8 Nucleosynthesis (BBN)

60 kyr 0.75 eV 3200 Matter-radiation equality
300 kyr 0.3 eV 1100 Atom formation, photon decoupling (CMB)
400 Myr 5 meV ↘ 10 Reionization
9 Gyr 0.33 meV 0.4 Dark energy-matter equality
Now 10

→4 eV (2.73 K) 0 now

At the early Universe, the Universe was denser and hotter, dominated by the relativistic particles and radiation. Be-
cause of its high energy, particles and anti-particle pairs are created and annihilated. This process depends on the particle
contents of our nature. The standard model of particle physics is well tested and understood up to ↘ 1 TeV (horizontal
line in the table), beyond which the predictions from the standard model are somewhat uncertain and other beyond-the-
standard-model physics have vastly different predictions. Our discussion will be limited to the standard model physics.

In this radiation dominated era, almost all particles behave like massless particles, and their energy density evolves
as radiation ω → 1/a

4. In RDE, the Hubble expansion and the age of the Universe are well approximated in terms of the
equilibrium temperature T of the plasma as

H ↓ 0.3 sec
→1

≃
g↑

(
T

1 MeV

)
2

, t =
1

2H
↓ 1 sec

(
T

1 MeV

)→2

g
→1/2

↑ , (1.1)

where g↑ is the total spin-degeneracy factor shown in Figure 1.1. Particles stay in thermal equilibrium with the plasma, as
long as their interaction rate ” with the plasma remains sufficiently high:

” = n ⇐ϑv⇒ ⇑ H , (1.2)

where ϑ is the interaction cross section [ϑ] = L
2, v is the relative velocity of the particles in interaction, and n is

the particle number density. Note that the interaction rate is averaged over the particle velocity distribution. A useful
conversion relation is

1 MeV = 1.602↔ 10
→6

erg = 1.161↔ 10
10

K . (1.3)

At T < 10
16 GeV, the dominant interaction among the relativistic particles is mediated by massless gauge bosons,

and the cross section is ϑ ↘ ϖ
2
/T

2, such that the interaction rate is ” → nϑv ↘ ϖ
2
T , where the SU(2) gauge coupling

constant is g = 1/
≃
4ϱϖ and we used n → T

3, v ↘ 1. Therefore, the interaction is efficient to maintain the thermal
equilibrium

”

H
↘ 10

16
GeV

T
⇓ 1 for T < 10

16
GeV . (1.4)

At lower temperature T < 300 GeV, the interactions are now mediated by massive gauge bosons (e.g., mZ ↓ 100 GeV),
and the cross section is ϑ ↘ G

2

F
T
2, such that the interaction rate is ” → G

2

F
T
5. Therefore, the interaction is again

efficient to maintain the thermal equilibrium up to T > 1 MeV,

”

H
↘ G

2

FT
3 ↘

(
T

1 MeV

)
3

⇓ 1 for T > 1 MeV , (1.5)
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where the Fermi constant is GF = 1.15↔ 10
→5 GeV→2. Then, the question arises: what happens at T > 10

16 GeV? The
Universe might not have been in thermal equilibrium at such early time.

A brief overview of the most important cosmological events are as follows (Mo et al., 2010):

• At T ⇓ 1 TeV, two important events must take place: inflationary expansion and baryogensis. An inflationary
expansion for a very short period of time must have taken place to explain some of the key problems in observa-
tional cosmology, and some mechanism beyond the standard model must have been in operation to generate the
asymmetry between baryons and anti-baryons we observe today. The former is highly constrained and relatively
well understood, while the latter is very poorly understood. Beyond these two events that must have happened in
the early Universe, there might have been other interesting events in other beyond-the-standard-model physics such
as the grand unification. During this stage, quarks and gluons are not bound to hardronic states, such that there exist
no protons, neutrons and so on. The Universe was made of fundamental elementary particles, forming a hot plasma
(or soup).

• At T ↘150 MeV (t ↘ 10
→5 sec), the quark–hadron phase transition occurs, confining quarks into hadrons, and

the chiral symmetry is broken. Lattice QCD calculations show that the electroweak and QCD phase transitions are
smooth. Once the transition was complete, the Universe was filled with a hot plasma consisting of three types of
relativistic pions ϱ

±
, ϱ

0 (mε± = 139.6 MeV, mε0 = 135.0 MeV), non-relativistic nucleons (p, n), relativistic
leptons e±, µ± (mµ = 105 MeV), and their associated neutrinos (εe, ε̄e, εµ, ε̄µ, εω , ε̄ω ), and photons, all in thermal
equilibrium. Heavier lepton ς (mω = 1.78 GeV) have already annihilated, and only a trace amount due to lepton
asymmetry must have remained.

• At T ↘ 100 MeV (t ↘ 10
→4 sec), pions become non-relativistic, and ϱ

±-pairs annihilate each other, while the
neutral pions ϱ0 decay into photons. From this point on, protons and neutrons are the only hadronic species left. At
about the same time, muons µ± start to annihilate.

• At T ↘ 1 MeV (t ↘ 1 sec), electrons and positrons become non-relativistic, annihilating each other. At about
the same time, e-neutrinos εe also decouple from the hot plasma. µ- and ς -neutrinos decouple a bit earlier than
e-neutrinos. The weak interactions become ineffective, and the ratio of neutrons to protons is frozen.

• At T ↘ 0.1 MeV (t ↘ 3 minutes), the Big Bang Nucleosynthesis (BBN) starts, synthesizing protons and neutrons
to produce D, He and a few other heavy elements. This nuclear fusion is exactly the same as one at the core of stars,
but it takes place everywhere in the Universe.

• At T ↘ 4000 K (t ↘ 2 ↔ 10
5 yr), free electrons and protons recombine to form neutral hydrogen atoms. The

Universe then becomes transparent to photons, and these free-streaming photons are observed today as the cosmic
microwave background (CMB) in a black-body distribution.

• dark age, first stars, cosmic reionization, habitable planets and life formation, dark energy domination

1.2 Thermal Equilibrium in the Early Universe

1.2.1 Chemical Potential

• Thermodynamic Quantities.— Consider creating a system with internal energy U in an environment with tempera-
ture T . The Helmholtz free energy F = U ⇔ TS is needed to create such system with the help from the environment,
where S is the entropy of the final system. In a given environment, the system tends to minimize the internal energy or
maximize the entropy, i.e., minimize the Helmholtz free energy. At the minimum of the Helmholtz free energy, the system
reaches the thermal equilibrium. The Enthalpy H = U + PV is similar, but such system is created from a small volume,
that more energy for PV work is needed. Finally, the Gibbs free energy is the combination of all: G = U ⇔ TS + PV .
They are all related by the Legendre transformation.

• Legendre Transformation.— converts a function of a set of variables to another function of their conjugate variables.
For example, consider a function f(x, y). The conjugate variables of (x, y) are (U,W )

U :=

(
φf

φx

)

y

, W :=

(
φf

φy

)

x

, df = U dx+W dy . (1.6)

2
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Table 1.1: Particles in the Standard Model

particle mass gi

↼ 0 2
ε, ε̄ ↗ 0 6

e
+, e

→ 0.51 MeV 4
µ
+, µ

→ 106 MeV 4
ϱ
+, ϱ

→ 135 MeV 2
ϱ
0 140 MeV 1

gluons 0 16
u, ū 5 MeV 12
d, d̄ 9 MeV 12
s, s̄ 115 MeV 12
c, c̄ 1.3 GeV 12

ς
+, ς

→ 1.8 GeV 4
b, b̄ 4.4 GeV 12

W
+, W

→ 80 GeV 6
Z 91 GeV 3
H 114 GeV 1
t, t̄ 174 GeV 12

Now consider a combination of two variables Wy and a new function g := f ⇔Wy:

d(Wy) = y dW +W dy , dg = df ⇔ d(Wy) = U dx⇔ y dW , (1.7)

which implies that the function g has two independent variables x and W :

g = g(x,W ) , U =

(
φg

φx

)

W

, y = ⇔
(

φg

φW

)

x

. (1.8)

In this way, three functions can be obtained by Legendre transforming f(x, y) with two variables.

• Chemical Potential.— Consider a thermodynamic system, in which particles are created and annihilated. The amount
of energy needed to create a particular species is called the chemical potential (by definition):

dU =: TdS ⇔ PdV +

n∑

i=1

µidNi , µi =

(
φU

φNi

)

S,V,Nj →=i

, (1.9)

when the entropy and the volume of the system are held fixed. While exact in the definition, it is in practice difficult to
find a situation, where the volume and the entropy is held fixed. Instead, the other relation is more illuminating for the
meaning of the chemical potential:

dG = ⇔SdT + V dP +

n∑

i=1

µidNi , µi =

(
φG

φNi

)

T,P,Nj →=i

. (1.10)

In thermodynamic equilibrium with constant temperature and pressure, the system exchange particles with its environ-
ments. Then we have

dG = 0 ,

n∑

i=1

µidNi = 0 . (1.11)

The chemical potential µ is independent of its fundamental physical properties of particles, but determined by the interac-
tions and the thermodynamic system (e.g., what is conserved). However, since photons are always created and absorbed
by a black body, its chemical potential is always zero in equilibrium. Another example is the electron pair production
process:

env + ↼ + ↼ ↖↙ e+ ē+ env , 2 µϑ = µe + µē , ↭ µe = ⇔µē , (1.12)

in which the chemical potential of a particle and its anti-particle has the opposite sign.

3
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1.2.2 Equilibrium Distribution

As long as the scattering process or the interactions between particles are rapid, particles are in kinetic equilibrium, and
their phase-space distribution function f(x, p, t) is described by the thermal equilibrium distribution:

f(p, t)d
3p =

g

(2ϱ)3

d
3p

exp[(E ⇔ µ)/T ]± 1
,

{
+ : Fermion

⇔ : Boson
, (1.13)

where g is the spin-degeneracy factor for a given phase-space density and (2ϱ⊋)3 is the unit phase-space volume. Mind
that our convention assumes ⊋ = c = k = 1. In a homogeneous and isotropic background universe, the position
dependence and directional dependence vanish. The physical quantities of such particle distribution are

n(t) =

∫
d
3p f(p, t) =

g

2ϱ2

∫ ↓

m

≃
E2 ⇔m2 EdE

exp[(E ⇔ µ)/T ]± 1
, (1.14)

ω(t) =

∫
d
3p Ef(p, t) =

g

2ϱ2

∫ ↓

m

≃
E2 ⇔m2 E

2
dE

exp[(E ⇔ µ)/T ]± 1
, (1.15)

P (t) =

∫
d
3p

1

3

p
2

E
f(p, t) =

g

6ϱ2

∫ ↓

m

(E
2 ⇔m

2
)
3/2

dE

exp[(E ⇔ µ)/T ]± 1
, (1.16)

where the isotropic pressure is derived from P =
1

3
n ⇐pv⇒ and v = p/E. Since the baryon to photon number ratio is so

small,
↽ :=

nb

nϑ

↓ 5↔ 10
→10

, (1.17)

the chemical potential of all species may be approximated as zero for computing the thermodynamic quantities of the
early Universe, where photons with µϑ = 0 are the dominant. The ratio of the lepton number density to the photon is also
expected to be the same as ↽.

For non-relativistic particles (m ⇓ T , E ↓ m), the distinction between Fermionic and Bosonic particles disappear,
and they all follow the classical Maxwell-Boltzmann distribution

f(p, t) =
g

(2ϱ)3
exp

(
⇔m⇔ µ

T

)
exp

(
⇔ p

2

2mT

)
. (1.18)

By integrating the distribution, we obtain

n(t) = g

(
mT

2ϱ

)
3/2

exp

[
⇔m⇔ µ

kT

]
, ω(t) = mn , P (t) = nkT (1.19)

In contrast, for relativistic particles (T ⇓ m, T ⇓ µ), the physical quantities are

n(t) =

{
g

ε2 ⇀(3)
(
kT

⊋c
)3

: Boson

3g

4ε2 ⇀(3)
(
kT

⊋c
)3

: Fermion
, ω(t) =

{
gε

2

30
kT

(
kT

⊋c
)3

: Boson

7

8

gε
2

30
kT

(
kT

⊋c
)3

: Fermion
, P (t) =

1

3
ω(t) ,

(1.20)
where the Riemann-Zeta function is

⇀(n) :=

↓∑

i=1

1

in
, ⇀(3) ↓ 1.202 . (1.21)

Since the number density of non-relativistic particles in thermal equilibrium is exponentially suppressed, only the rela-
tivistic components matter in determining the thermodynamic quantities of the system:

ntot(T ) =
⇀(3)

ϱ2
g↑,nT

3
, ωtot(T ) =

ϱ
2

30
g↑T

4
, Ptot(T ) =

1

3
ω(T ) , (1.22)

where we assumed µi ∝ 0 for all species and defined

g↑,n :=

∑

i↔Boson

gi

(
Ti

T

)
3

+

(
3

4

) ∑

i↔Ferm.

gi

(
Ti

T

)
3

, g↑ :=
∑

i↔Boson

gi

(
Ti

T

)
4

+

(
7

8

) ∑

i↔Ferm.

gi

(
Ti

T

)
4

.

(1.23)

4
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Figure 1.1: Effective number of relativistic dof. The gray bands represent the QCD phase transition and the neutrino
decoupling. The difference around 1 TeV is due to the non-perturbative QCD effect. Taken from Baumann et al.

1.2.3 Entropy Density

In the early Universe, particles are created and annihilated. As the Universe expands and cools, some particles annihilate
and disappear. Hence the total number is not conserved. So, it is useful to have some quantity that is related to the
conservation law, i.e., entropy density s(T ). Assuming µ ∝ 0, the entropy density for relativistic particles is defined as

s :=
1

T
(ω+ P )tot = g↑,s

(
2ϱ

2

45

)
T
3
, g↑,s :=

∑

i↔Boson

gi

(
Ti

T

)
3

+

(
7

8

) ∑

i↔Ferm.

gi

(
Ti

T

)
3

. (1.24)

We will show that the conservation of total entropy of the Universe states

S := sa
3
,

d

dt
S = 0 , g

1/3

↑,s (T ) T → 1

a
. (1.25)

The thermodynamic laws TdS = dU + PdV apply to the whole system, which is the Universe in our case. The total
energy or entropy, etc of the Universe are ill-defined. Instead, we look for local densitites that represent the entropy, i.e.,
the entropy density s.

Taking the derivative of P (t) with respect to T of a fluid and treating the chemical potential as a function of T , we
obtain

dP

dT
= ⇔4ϱ

3

∫ ↓

0

dp (p
3
T )

(
df

dp

)[
E

T 2
+

d

dT

(
µ

T

)]
,

df

dp
= ⇔ p

ET
f
2
(p, t) exp

(
E ⇔ µ

T

)
, (1.26)

and with integration by part we re-write the derivative as

dP

dT
=

ω+ P

T
+ nT

d

dT

(
µ

T

)
↗ ω+ P

T
. (1.27)

Manipulating the conservation equation

ω̇+ 3H(ω+ P ) = 0 , d
(
ωa

3
)
= ⇔Pd

(
a
3
)
,

d

dT

[
(ω+ P )a

3

]
= a

3
dP

dT
, (1.28)

5
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we can arrive at the conservation equation

d(sa
3
) = ⇔

(
µ

T

)
d(na

3
) ↗ 0 , s :=

ω+ P

T
⇔ nµ

T
↗ ω+ P

T
. (1.29)

In most cases, the chemical potential is negligible (µ ′ T ) or the number density is conserved (n → 1/a
3), such that the

combination (sa
3
) is conserved throughout the evolution. Simplifying the relations for s and dP/dT by assuming µ ∝ 0,

we obtain the thermodynamic relation

dT

T
=

dP

ω+ P
, S := sa

3
, TdS = d

[
(ω+ P )a

3
]
⇔ (ω+ P )a

3
dT

T
= d

(
ωa

3
)
+ P d(a

3
) ,

(1.30)
with which we can identify s defined above as the entropy density and the total entropy S is conserved. Hence during the
radiation dominated era, the energy density scales as

ω → g↑T
4 → g↑ g

→4/3

↑s a
→4

. (1.31)

1.2.4 Spin degeneracy factors

The spin degeneracy factor accounts for the number of degenerate states at the same energy level. The photon has two
polarization (gϑ = 2), while neutrinos are only left-handed (gϖ = 1). Note that there exist three generations (ε, µ, ς ) of
neutrinos and their anti-particles (ε̄, µ̄, ς̄ ). Spin-1/2 fermions like electrons have ge = 2, and there exist three generations
and their anti-particles.

At T > 300 GeV, there exist 8 gluons (gg = 2), 3 weak gauge bosons (W±, Z), Higgs doublet (mH = 125 GeV),
three generations of quarks (gq = 2; two quarks per generation per color) and leptons (ge, gϖ) to yield1

g↑ = gϑ + 8↔ gg + 3↔ gW±,Z + gH +
7

8
↔ 3↔ (3↔ 2↔ 2↔ gq + 2↔ gϖ + 2↔ ge) = 106.75 . (1.32)

At 150 MeV gluons hadronize, and soon after most of the particles become non-relativistic, according to their mass
(mH = 125 GeV, mZ = 91 GeV, mW± = 80 GeV, mω = 1.78 GeV, mµ = 105 MeV). So at T ↘ 100 MeV, there left
only photons, electrons, and three generations of neutrinos:

g↑ = gϑ +
7

8
(2↔ ge + 2↔ 3↔ gϖ) = 10.75 . (1.33)

At a freeze-out temperature T ↘ 1 MeV, all three generations of neutrinos decouple from the rest of the plasma
(Tω ↓ 3.7 MeV, Tµ ↓ 2.4 MeV, Tϖ ↓ 1 MeV), and its temperature strictly declines as Tϖ → 1/a, since its g↑,s remains
unchanged, after the decoupling. However, at about Tϑ ↘ 0.51 MeV, electrons and anti-electrons become non-relativistic,
and they annihilate intro photons , transferring its entropy to the photon plasma, but not to the decoupled neutrinos, which
slows the decline of Tϑ . Assuming an instantaneous transfer of entropy, the change in the spin-degeneracy factor of the
photon plasma can be computed as

g
before

↑,s = gϑ +
7

8
(ge + gē) =

11

2
↙ g

after

↑,s = gϑ . (1.34)

Given the conservation of g↑,sT 3 throughout the annihilation, the neutrino temperature is slightly lower than the photon
temperature, after the annihilation event

Tϖ =

(
4

11

)
1/3

Tϑ → 1

a
, (1.35)

and the spin degeneracy factor is then

g↑ = gϑ +
7

8
(2↔ 3↔ gϖ)↔

(
4

11

)
4/3

= 3.36 . (1.36)

1After the spontaneous symmetry breaking, the weak gauge bosons are massive (gW±,Z = 3), and the Higgs boson is left with only one dof
(gH = 1), such that there exist 10 dof. Mind that at this energy scales, they are all non-relativistic. However, before the symmetry breaking, the
gauge bosons are massless (gW±,Z = 2), and the Higgs boson doublet has full dof (gH = 4; two per each component), such that the total dof
remains the same.

6
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The total radiation density (↼, ε) is then

ωrad =

[
1 +Nϖ ↔

7

8

(
4

11

)
4/3


ωϑ , Nϖ = 3 , ωϑ = aBT

4

ϑ , (1.37)

where the radiation constant aB is related to the Stefan-Boltzmann constant ϑB as

aB =
4ϑB

c
= 7.573↔ 10

→15
erg cm

→3
K

→4
. (1.38)

In fact, at the annihilation of electrons and anti-electrons, the neutrino decoupling was incomplete, and some entropy is
dumped into neurinos as well. Hence the the neutrino temperature relation above is not precise, and the correction is often
rephrased as the effective relativistic degrees of freedom: Nϖ = 3.04. The evolution of the spin degeneracy factors is
shown in Figure 1.1. Today the photon plasma cools down to

Tϑ = 2.73K , nϑ = 413 cm
→3

, ωϑ = 4.7↔10
→34

g cm
→3

, ⇁ϑ = 2.5↔10
→5

.

(1.39)
The cosmic neutrino plasma is

Tϖ = 1.95K , nϖ+ϖ̄ = 113 cm
→3

, n↗ϖ = 338 cm
→3

(ε+µ+ς) , ⇁ϖ = 1.7↔10
→5

,

(1.40)
for massless neutrinos. Assuming they are relativistic at decoupling, the massive neutrinos

ωϖ = 113mϖ cm
→3

, ⇁ϖ = 0.1

(
mϖ

10 eV

)
. (1.41)

1.3 Distribution of Decoupled Species

As the Universe expands and cools down, the interaction rate ” between species falls below the expansion rate H(t), so
that a particle species decouples from the plasma. This is called “freeze-out” because there exist no further interactions
and its distribution remains frozen. Since the momentum of both massless and massive particles redshifts as 1/a in
the background universe, the current phase-space distribution of a decoupled species can be expressed in terms of the
equilibrium distribution at decoupling:

f(p, t) = feq

(
p

a

adec
, tdec

)
, t ⇑ tdec , p(tdec) = p

a

adec
. (1.42)

When a relativistic species is decoupled at Tdec ⇓ m, the Fermi-Dirac or Bose-Einstein distribution is maintained, and
hence the number density is as abundant as photons, but the freeze-out condition dictates its temperature declines as 1/a:

f(p, t) =
g

(2ϱ)3

[
exp

(
p a

adecTdec

)
± 1

]→1

, T (t) = Tdec

adec

a
, (1.43)

where E ↓ p for relativistic particles. Note that the decoupled species evolves separately, so that the change in the
spin-degeneracy factor in the other plasma is irrelevant here.

However, when particles are non-relativistic (T ′ m) at decoupling, the distribution function is the Maxwell-
Boltzmann distribution, and according to the freeze-out condition, the temperature of the decoupled species declines
faster than the relativistic particles

f(p, t) =
g

(2ϱ)3
exp

(
⇔ m

Tdec

)
exp

(
⇔ p

2
a
2

2m a
2

dec
Tdec

)
, T (t) = Tdec

(
adec

a

)
2

, (1.44)

where the exponential exp(⇔m/Tdec) is constant. Consequently, the number density of a decoupled species evolves as

n(t) =

[
a(tdec)

a(t)

]
3

neq(tdec) , (1.45)

for both relativistic and non-relativistic particles.

7
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Using the entropy conservation in Eq. (1.25), we obtain the temperature ratio and the number density ratio of a
decoupled relativistic species to the photons as

[
Tϑ(tdec)

Tϑ(t)

]
3

=
g↑,s(t)

g↑,s(tdec)

a
3
(t)

a3(tdec)
,

n(t)

nϑ(t)
=

ge!

2

[
T (t)

Tϑ(t)

]
3

=
ge!

2

g↑,s(T )

g↑,s(Tdec)
, (1.46)

where ge! = g for bosons and ge! = 3g/4 for fermions and we used the temperature of the decoupled species T (tdec) =
Tϑ(tdec) at the time of decoupling.

1.3.1 Boltzmann Equation and Relic Number Density

The particle interactions involve multiple species, and they depend on the velocity distribution of the particles. Conse-
quently, solving for their evolution requires coupled differential equations, called the Boltzmann equation. Consider an
interaction ψ+a+ b+ · · · ∞ i+ j+ · · · that involves many particles and their creation and annihilation. The Boltzmann
equation for a species ψ (similarly for other particles) is

dfϱ

dt
= Cϱ[f ] , (1.47)

where the right-hand side C is called the collision term that depends on the interaction and the distribution functions of
the other particles in interaction. In the absence of collision, the Liouville theorem states that the phase-space distribution
is conserved. In a homogeneous and isotropic universe, the phase-space distribution function cannot depend on a position
or a direction, i.e., fϱ = fϱ(p, t),

dfϱ

dt
=

φfϱ

φt
+

φp

φt

φfϱ

φp
,

φp

φt
= ⇔Hp , (1.48)

where we used p → 1/a for any particles in the background universe. Integrating over the momentum, we derive that the
number density evolves as

dnϱ

dt
+ 3Hnϱ =

∫
d
3
p Cϱ[f ] , nϱ =

∫
d
3
p fϱ . (1.49)

In the absence of collision, the number density decreases as nϱ → 1/a
3, and the term 3Hnϱ is called the Hubble drag (or

friction) due to the expansion of the Universe.
The collision term depends on the interaction process, and formally it can be expressed as

∫
d
3
p Cϱ[f ] =




i

∫
d
4
pi


(2ϱ)

4
δ
D
(pϱ + pa + · · ·⇔ pi ⇔ pj ⇔ · · · ) (1.50)

↔
[
|M|2↘fifj · · · (1± fϱ)(1± fa) · · ·⇔ |M|2≃fa · · · fϱ(1± fi)(1± fj) · · ·

]
.

The first line is just the energy-momentum conservation of the process, the second line shows the interaction of considera-
tion. The invariant matrix element M can be derived from the QFT calculations, and with T-invariance (or CP-invariance)
it is identical in both directions (|M|2 := |M|2≃ = |M|2↘). The distribution functions fifj · · · in the second line indi-
cates that more particles i, j, · · · create more particles ψ, a, b, · · · , and vice versa. The extra factors such as (1 ± fϱ) are
called the Pauli block (⇔) or the Bose enhancement (+).

For the moment, the collision term is macroscopically treated, and a significant simplification can be made, if most
species but ψ are in thermal equilibrium and the temperature is low T ′ E ⇔ µ. Consider a simplified interaction
ψ + ψ̄ ∞ X + X̄ , in which ψ and ψ̄ annihilate and a pair of X and X̄ are created. At this low temperature T ′ E ⇔ µ,
the number densities of particles can be written as

n =

∫
d
3
p f = e

µ/T
nEQ , nEQ :=

∫
d
3
p fEQ , fEQ := f(µ ∝ 0) ↓ g

(2ϱ)3
e
→E/T

,

(1.51)
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Figure 1.2: The relic abundance for a simple two-body process with a constant ▷ := ⇐ϑv⇒.

where we ignored ±1 in the distribution function fEQ Further ignoring the Pauli block or the Bose enhancement, The
second line of the collision term is then greatly simplified as

fXf
X̄
⇔ fϱfϱ̄ = e

→(Eω+E
ω̄
)/T


e
(µX+µ

X̄
)/T ⇔ e

(µω+µ
ω̄
)/T


= e

→(Eω+E
ω̄
)/T



 nXn
X̄

n
EQ

X
n
EQ

X̄

⇔
nϱnϱ̄

n
EQ

ϱ
n
EQ

ϱ̄



 , (1.52)

where we used the energy conservation Eϱ + E
ϱ̄
= EX + E

X̄
. Finally, we define the thermally-averaged velocity times

cross-section ⇐ϑv⇒ as

n
EQ

ϱ
n
EQ

ϱ̄


ϑ
ϱϱ̄≃XX̄

|v|

:=




i

∫
d
3
pi


(2ϱ)

4
δ
D
(pϱ + p

ϱ̄
⇔ pX ⇔ p

X̄
)|M|2e→(Eω+E

ω̄
)/T

, (1.53)

and the Boltzmann equation (1.49) is now

dnϱ

dt
+ 3Hnϱ = n

EQ

ϱ
n
EQ

ϱ̄


ϑ
ϱϱ̄⇐XX̄

|v|



 nXn
X̄

n
EQ

X
n
EQ

X̄

⇔
nϱnϱ̄

n
EQ

ϱ
n
EQ

ϱ̄



 . (1.54)

With near thermal equilibrium but ψ particles, we arrive at the final expression of the Boltzmann equation

dnϱ

dt
+ 3Hnϱ = ⇐ϑv⇒

(
n
2

ϱ,EQ
⇔ n

2

ϱ

)
. (1.55)

At thermal equilibrium, the number density nϱ will be equivalent to n
EQ

ϱ
, and no further net change (creation or annihi-

lation) takes place. If nϱ > n
EQ

ϱ
, more decay of ψ and ψ̄ will further reduce nϱ and increase nX , and this is reflected in

the collision term, where the RHS is negative.
Given the entropy density scales as a→3, it is convenient to define a scaled number density Y that does not change in

time as long as n → 1/a
3,

Yϱ :=
nϱ

s
, Y

eq

ϱ
:=

n
eq

ϱ

s
. (1.56)

The Boltzmann equation is then manipulated in terms of Y as

dYϱ

dt
= s ⇐ϑv⇒

(
Y

2

ϱ,eq
⇔ Y

2

ϱ

)
, (1.57)

9
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and by defining a scaled (inverse) temperature x

x :=
mϱ

T
, t =

1

2H
→ 1

T 2
,

d ln t

dx
=

2

x
, (1.58)

the Boltzmann equation can be written as

x

Y
eq

ϱ

dYϱ

dx
= ⇔

n
eq

ϱ
⇐ϑv⇒

H(x)






Yϱ

Y
eq

ϱ


2

⇔ 1



 . (1.59)

The variable x determines if the particle species is relativistic (x ′ 1) or non-relativistic (x ⇓ 1), but it also determines
the flow of time (x ⇓ 1 at late time). Given the interaction cross-section, the Boltzmann equation can be numerically
solved with the initial condition of thermal equilibrium at early time Y (x = 0) = Yeq for all species. Assuming a constant
cross-section, several solutions to the Boltzmann equation are given in Figure 1.3, in which the equilibrium distribution
decays in time as the particle species becomes non-relativistic (x ↓ 1) and its abundance is exponentially suppressed
compared to the plasma. For a weak cross-section, the particle species decouples early when they are relativistic, and
their final abundance is similar to those of photons, rather insensitive of its exact value of the cross-section. For a stronger
cross-section, the particles stay in thermal equilibrium longer, and its final relic abundance is sensitively dependent on the
value of the cross-section.

A simple analytic approximation can be made to solve the Boltzmann equation. First, the equilibrium abundance
Y

eq
= n

eq
/s is obtained by using n

eq in the relativistic and the non-relativistic cases as

Y
eq

ϱ
(x) =

45⇀(3)

2ϱ4

g
e!

ϱ

g↑,s(x)
for x ′ 1 , Y

eq

ϱ
(x) =

90

(2ϱ)7/2

gϱ

g↑,s(x)
x
3/2

e
→x

for x ⇓ 1 , (1.60)

where ge!
ϱ

= gϱ for Boson and g
e!

ϱ
= 3gϱ/4 for Fermion. Clearly, as the Universe evolves (x increases), Y eq also evolves

due to the change in n
eq. Second, the freeze-out (or decoupling) is assumed to be instantaneous, if ” = H at xf . Equating

the interaction rate ” at equilibrium with the Hubble parameter in RDE

H(x) =
8ϱG

3
ωtot =


ϱ2g↑
90

m
2

ϱ

x2Mpl

, M
2

pl
=

1

8ϱG
, ” = Y

eq

ϱ
s ⇐ϑv⇒ , (1.61)

we obtain the freeze-out time

xf =


90

ϱ6g↑
⇀(3)g

e!

ϱ
⇐ϑv⇒mϱMpl for x ′ 1 , x

→1/2

f
e
xf =


45

4ϱ5g↑
gϱ ⇐ϑv⇒mϱMpl for x ⇓ 1 . (1.62)

The condition xf ′ 1 for the relativistic case constrains the strength of ⇐ϑv⇒ and also the mass mϱ. The freeze-out for
the non-relativistic case needs to be solved, but its value is due to the exponential factor highly sensitive to the values in
the RHS.

Now we consider the relic densities today. First, they can be relativistic or non-relativistic today. The former is similar
to the photon distribution, and hence negligible. The latter, non-relativistic relic species today, is often called as the WIMP
(weakly interacting massive particles). WIMPS are non-relativistic today, and its energy density is dominated by their rest
mass energy. However, it can be relativistic (xf ′ 1) or non-relativistic (xf ⇓ 1) at the freeze-out. The former is called
the hot relic, and their abundance is as much as the photons today, while the latter is called the cold relic.

• Relativistic species today.— The relic density of a relativistic species can then be obtained by using Eq. (1.46) as

#ϱh
2

#ϑh
2
=

ωϱ

ωϑ
=

g
e!

ϱ

2

(
Tϱ

Tϑ

)
4

=
g
e!

ϱ

2

[
g↑,s(x)

g↑,s(xf )

]
4/3

. (1.63)

Given that g↑,s always decreases in time and #ϑh
2
= 2.5 ↔ 10

→5, the relic density of a relativistic species today is as
negligible as the photon energy density.
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Figure 1.3: Cosmological constraints on the mass of WIMP #ϱh
2.

• Hot relics.— The relic density of a hot species is then

ωϱ = mϱY
eq

ϱ
(xf )s(x0) → mϱ , #ϱh

2
=

8ϱG

3H
2

0

ωϱh
2
= 7.64↔ 10

→2

[
g
e!

ϱ

g↑,s(xf )

(
mϱ

1 eV

)
→ mϱ ,

(1.64)
where x0 is today. For hot relics, their number density is as large as the photons, and it is rather insensitive to xf . Note
that the dependence of ⇐ϑv⇒ is included in the freeze-out xf . For a large mass mϱ, xf becomes comparable to unity, and
it cannot be hot-relic any more. Given the observational constraint #toth

2 ↫ 1, we can derive that the mass of hot relics
should be smaller than

mϱ ∈ 13.1 eV

[
g↑,s(xf )

g
e!

ϱ


, (1.65)

which corresponds to

mϖ ∈ 93.8 eV , g↑,s(xf ) = 10.75 , g
e!

ϖ =
3

4
↔ 2↔ gϖ , (1.66)

for massive neutrinos (one species). This cosmological limit is called the Cowsik-McClelland bound. The Planck con-
straint is $mϖ < 0.23 eV, and some recent Lyϖ-forest constraint is < 0.12 eV. The neutrino oscillation constraints give
0.0006 < ⇁ϖ < 0.0025.

• Cold relics.— Similar calculations can be made for cold relics, but the abundance Y
eq

ϱ
is exponentially sensitive to xf .

The LHS for the freeze-out condition

x
→1/2

f
e
xf =


45

4ϱ5g↑
gϱ ⇐ϑv⇒mϱMpl , (1.67)

increases monotonically with xf , i.e., the larger mϱ or the stronger ⇐ϑv⇒, the later the freeze-out becomes, suppressing
the abundance exponentially. Keeping xf in the equation, we express the abundance and the relic density

Y
eq

ϱ
(xf ) =


45

8ϱ2

xf
g↑,s(xf )

1

⇐ϑv⇒mϱMpl

, #ϱh
2
= 0.86

xf
g↑,s(xf )

[
⇐ϑv⇒

1010 GeV
→2

]→1

. (1.68)
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The relic abundance is sensitively dependent upon ⇐ϑv⇒, and it goes down with mϱ. While the relic energy density has
no explicit dependence on mϱ, the freeze-out time xf increases with mϱ. For example, stable neutrinos of mass between
1 MeV and mZ = 100 GeV fall into this cold relic, and their weak interaction rate is

⇐ϑv⇒ ↗ c2

2ϱ
G

2

Fm
2

ϖx
→b

for mϱ < mZ , (1.69)

where c2 ↓ 5 for a Dirac neutrino, b ↘ 1, and GF is the Fermi constant. With this, the freeze-out time can be solved as

xf ↓ 17.8 + 3 ln

(
mϖ

1 GeV

)
, (1.70)

and the relic energy density is

#ϖh
2 ↓ 3.95

c2

x
b+1

f
g↑,s(xf )

(
mϖ

1 GeV

)→2

= 1.82

(
mϖ

1 GeV

)→2

1 + 0.17 ln

(
mϖ

1 GeV

)
, (1.71)

The observational constraint puts the mass of stable neutrinos

mϖ ⇑ 1.4 GeV , (1.72)

and the relic density is smaller with larger mass due to the larger cross-section and the suppression of the abundance.
However, for particles of mass mϱ ⇓ mZ , the cross-section decreases with particle mass as m→2, instead of increasing
with m

2. This implies

#ϱh
2 ↓

(
mϱ

1 TeV

)
2

, mZ ∈ mϱ ∈ 3 TeV . (1.73)

For the cold relics, the bound is stronger, because of the non-relativistic freeze-out, and this gives a lower limit for the
massive cold relics, called the Lee-Weinberg bound. Figure 1.3 summarizes the cosmological bounds on viable models of
WIMPs.

1.3.2 Relic Density of Decaying Particles

If a particle is unstable and decays into other particles, the Boltzmann equation can be supplemented by an extra term for
such decay. The number density of decaying particles is always governed by the half-life ς , beyond which the number
density is exponentially suppressed as

n(t) → exp[⇔t/ς ] , (1.74)

but below which the particles behave like stable particles.
If the decay product involves photons, such particles are subject to more stringent observational constraints. A particle

decay into photons often involves strong Gamma rays, and these photons should be hidden from observations by prevent-
ing the particles decay with longer life-time or by themalizing them. It takes a while to thermalize Gamma ray photons
with background radiation, such that the decays must happen early enough.

1.4 Big Bang Nucleosynthesis

Where do we come from? To this philosophical question, here we find some physical answers. The basic structural unit of
life is cells that contain lots of molecules, and molecules are electrically neutral groups of atoms held by chemical bonds.
Atoms form the smallest unit of the (ordinary) matter, and they are composed of one nucleus and several electrons bound
to the nucleus. Where do they come from? Normal stars at the core fuse lighter elements like hydrogen and helium,
and more massive stars synthesize carbon, oxygen, and silicon, yielding irons, beyond which no net energy is gained
through nuclear fusion. Heavier elements are further generated by neutron captures in supernova explosions. However,
observations show that hydrogen and helium are ubiquitous in the Universe with almost constant ratio 75% hydrogen and
24% helium by mass. Indeed, the origin of those elements are primordial and global, rather than localized stars.

12
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1.4.1 Proton and Neutron Abundances

All nuclei are made of protons and neutrons, and they are characterized by its charge number Z (number of protons) and
the atomic mass A (number of protons and neutrons). Given their mass mp ↓ mn ↓ 940 MeV, protons and neutrons are
non-relativistic at t ↓ 10

→6 sec (T ↓ mp) with their number densities

nn,p = gn,p

(
mn,pT

2ϱ

)
3/2

exp

[
⇔mn,p ⇔ µn,p

T

]
, (1.75)

and they remain in thermal equilibrium until T ↘ 0.8 MeV via low-energy weak interactions

p+ e ∞ n+ εe , n+ ē ∞ p+ ε̄e , n ∞ p+ e+ ε̄e . (1.76)

Hence the ratio of the number densities in thermal equilibrium is

nn

np

=

(
mn

mp

)
3/2

exp

[
⇔mn ⇔mp

T
+

µn ⇔ µp

T

]
↓ exp

[
⇔Q

T

]
, Q := mn ⇔mp = 1.294 MeV , (1.77)

where we ignored the difference in the chemical potential µn⇔µp = µe⇔µϖ ↓ 0 in the weak interactions. At temperature
T ⇓ Q, the ratio of the number densities is unity, but it continuously decreases at lower temperature (T < Q), because
neutrons are slightly heavier than protons. However, due to the neutrino decoupling at T = 1 MeV, the weak interactions
become inefficient to keep protons and neutrons in thermal equilibrium, such that the ratio freezes out at T ↘ 0.8 MeV

nn

np

↘ exp

[
⇔1.294

0.8

]
↓ 1

5
. (1.78)

Free neutrons can further ▷-decay into protons at any time with its half-life ς = 887 ± 2 sec (↓ 15 min), which could
have exhausted neutrons in our Universe. However, before they decay into protons, most neutrons are indeed captured in
deuterium and helium nuclei, where they are stable.2 By the time the big bang nucleosynthesis is active, the ratio becomes

nn

np

↓ 1

7
at t ↓ 300 sec . (1.79)

1.4.2 Nuclear Synthesis of Heavier Elements

With numerous protons and neutrons, they can be forged to form heavier nuclei, but they are dissociated immediately
by energetic photons, until the Universe cools below their binding energy (e.g., 2.22 MeV for deuterium). In thermal
equilibrium, the abundance of nuclei with atomic mass A with charge Z is

nA = gA

(
mAT

2ϱ

)
3/2

exp

[
⇔mA ⇔ µA

T

]
= gA

(
mAT

2ϱ

)
3/2

exp


⇔mA

T

 
exp

(
µp

T

)
Z

exp

(
µn

T

)
(A→Z)

, (1.80)

where we used the relation for the chemical potential

µA = Zµp + (A⇔ Z)µn . (1.81)

With the same formulas for the proton and the neutron number densities in equilibrium, we can remove the chemical
potentials µp and µn in favor of np and np to express

nA =
gAA

3/2

g
A

N

n
Z

p n
A→Z

n

(
mNT

2ϱ

) 3
2 (1→A)

exp

(
BA

T

)
, gN := gp = gn = 2 , (1.82)

2Sometimes, Pauli’s exclusion principle is invoked for such stability, but neutrons do decay in nuclei, when energetically favorable. In nuclei,
all the neutrons and protons form a system, in which protons typically occupy higher energy state due to electromagnetic repulsion, such that nuclei
with somewhat more neutrons than protons are stable, because converting one neutron into a proton would need more energy. Of course, if even
more neutrons are present in nuclei, they inevitably occupy higher energy state than protons, and ω-decay is then energetically favorable.
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Figure 1.4: Average binding energy of nuclei per proton. With the steep increase in the binding energy, nuclear fusion is
an efficient way to generate energy up to iron, beyond which the binding energy decreases. Nuclear fission can be used
for elements heavier than irons to extract energy, though not as efficient as nuclear fusion.

where we approximated mN := mp ↓ mn and mA ↓ AmN , and defined the binding energy of nucleus

BA := Zmp + (A⇔ Z)mn ⇔mA . (1.83)

In the presence of heavier elements, the baryon number density is

nb := np + nn +

∑

i

AinA,i , (1.84)

and the mass fraction of each nucleus A:

XAi
:=

AinA,i

nb

, 1 =

∑

i

XA,i . (1.85)

The baryon number density includes free neutrons and protons, but also accounts for those inside nuclei with weight Ai,
i.e., it is the total number densities of protons or neutrons, while the mass fraction shows how many nuclei are captured in
the nucleus. The number density of nucleus A can then be re-expressed by using nϑ in Eq. (1.20) as

XA =
gA

2
A

5/2

[
4⇀(3)≃

2ϱ

]
A→1

X
Z

p X
A→Z

n ↽
A→1

(
mN

T

) 3
2 (1→A)

exp

(
BA

T

)
, (1.86)

where we defined the baryon-to-photon ratio:

↽ :=
nb

nϑ

= 2.72↔ 10
→8

⇁b

(
Tcmb

2.73 K

)→3

↗ 5↔ 10
→10

. (1.87)

As the temperature of the Universe cools below the binding energy, nuclei with atomic mass A can form, and for the
mass fraction to be non-negligible (XA ↓ 1), the temperature has to be below

lnXA ↓ 0 , TA ↗ |BA|
(A⇔ 1)

[
| ln ↽|+ 3

2
ln(mN/TA)

] . (1.88)
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Figure 1.5: Primordial abundances of light elements as a function of the baryon-to-photon ratio.
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The deuterium 2D has the lowest binding energy BD = 2.22 MeV, but the formation of deuterium takes place only when
the temperature of the Universe is an order-of-magnitude below BD ↓ 2 ↔ 10

10 K due to large number of photons. The
high-energy tail (Wien) of the photon distribution is sufficiently large enough to destroy deuterium nuclei, until it reaches
TD ↗ 10

9 K (t ↘ 100 sec). This is the beginning of the Big Bang Nucleosynthesis (BBN).
Once the nucleosynthesis begins, many channels of nuclear reaction take place. However, since the number densities

of nuclei in the Universe are quite low at the time of BBN, only two-body interactions are possible, and the fact that there
are no stable nuclei with atomic mass 5 or 8 implies that no elements heavier than lithium 7Li (3 protons) can be produced.
The next element in periodic table is 9Be (4 protons). In contrast, at the core of massive stars, where the densities are even
higher, many-body interaction channels are allowed, and even a short-lived 8Be that formed through 4He-4He collision
can quickly capture another 4He to form a stable carbon 12C, allowing further nuclear reactions to proceed.

Since the binding energy of deuterium is the lowest, the formation of deuterium nuclei acts as a bottleneck for nucle-
osynthesis, as heavier elements are already allowed to form by TD. Consequently, almost all the deuterium nuclei (or free
neutrons) are processed to form helium nuclei, and the mass fraction of helium is

Y := X4He ↓
4(nn/2)

nn + np

=
2(nn/np)D

1 + (nn/np)D
↗ 1

4
,

(
nn

np

)

D

↗ 1

7
, (1.89)

where the subscript D indicates the time of deuterium formation, when helium nuclei are yet to form, i.e., nb = nn + np.
Observations of the helium mass fraction is about 24% everywhere, and the confirmation of this prediction for He is one
of the success of the Big Bang model in the early days.

The predictions of primordial nucleosynthesis and their observational confirmation is of course important. In particu-
lar, it helps constrain ↽ or the baryon density ⇁b. However, it is in fact not easy to determine the primordial abundances
from observations, because the observed abundances have been re-processed through stars and other astrophysical events.
In the following we give a brief summary of the present observational situation (Mo et al., 2010):

• 4He: With its large abundances, it is relatively easy to make observations, and the abundances are often estimated
from ionized HII clouds by using the recombination lines. Since 4He can be produced in stars, the estimates are the
upper bound of the primordial abundances. In order to reduce this contamination, observers often target metal-poor
gas clouds. In reality, observations are made as a function of metalicity, and the helium abundance is estimated
by extrapolating it to zero-metalicity. The current estimate is Yp = 0.24 ± 0.01, but its abundance is relatively
insensitive to ↽.

• 2D: The deuterium abundance is estimated from UV absorption lines in the interstellar medium or in Lyϖ clouds at
high redshifts. Since deuterium is rather weakly bound, it is easy to destroy them, but at the same time, it is hard
to produce in stars. Therefore, the deuterium estimates serve as a lower bound. In particular, Lyϖ clouds at high
redshifts are quite close to primordial. The local estimates give [D/H]↓ 1.6↔ 10

→5, while the estimates from Lyϖ
clouds yield 2.82± 0.53↔ 10

→5. Since the deuterium abundance sensitively changes with ⇁b, its measurements are
crucial in determining ⇁b.

• 3He: The abundance of 3He can be measured by using meteorites and the solar wind in the solar system or by
measuring the strength of the 3He+ hyperfine transition line in HII regions. Old meteorites should contain material
at the formation of the solar system. Since 2D can be burned to 3He in the Sun, the sum of (D+3He) is a good
measure of the pre-solar abundance from the solar wind. While 3He can be destroyed at the core of stars, it is much
harder than 2D. The current measurements from the Solar system give an upper limit on [(D +

3
He)/H] < 10

→4.

• 7Li: Estimates of the 7Li abundance come from stellar atmospheres. Since 7Li is quite fragile, they are depleted if
transported deeper into the centers of stars, which results in significant variations in observations. With weak con-
vection, the estimates from metal-poor stars are believed to be more robust and close to the primordial abundances.
The current observations yield [

7
Li/H] ↓ (1.5± 0.4)↔ 10

→10.

With precise determination of Tϑ and ⇁b from CMB measurements, the predictions of BBN are completely fixed
under the standard model of particle physics and cosmology, and they are used for consistency check with observations,
in particular, of the abundances of 4He and 2D. On the other hand, the situation with 3He is too complex for a meaningful
comparison to be possible, and the results for 7Li appear to disagree within uncertainties. This discrepancy reflects
observational challenges in inferring the primordial abundances, but it might imply that the early Universe might have
been different from what the standard model physics predicts.
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1.5 Recombination and Matter-Radiation Decoupling

1.5.1 Recombination of Hydrogen Atoms

Once the nucleosynthesis is completed, the Universe consists of protons, helium nuclei, electrons, photons, decoupled
neutrinos, and a trace amount of other elements such as 2D, 3He and so on. All particles except photons and neutrinos
are already non-relativistic, and they stay in thermal equilibrium mainly through the electromagnetic interactions. As the
Universe cools, the next cosmological event is to form neutral hydrogen atoms by combining free electrons and protons,
which is called the cosmic recombination.

Assuming the thermal equilibrium and µH = µp+µe, we can derive the hydrogen number density in the exactly same
way to Eq. (1.82) as

nH =

(
gH

gpge

)
npne

(
meT

2ϱ

)→3/2

exp

(
BH

T

)
, gH = ge = 2 , gp = 1 , (1.90)

where the binding energy of hydrogen atoms is

BH := mp +me ⇔mH = 13.6 eV . (1.91)

Mind that the degeneracy factor for electrons in neutral hydrogen atoms is gH =


2n
2 ↓ 2 and that for ionized protons

is gp = 1. Ignoring helium or any other elements nb ↓ np + nH and assuming ne = np, the hydrogen number density
can be re-expressed as

nH

nb

=

(
ne

nb

)
2

↽ nϑ

(
meT

2ϱ

)→3/2

exp

(
BH

T

)
. (1.92)

By defining the ionization fraction (or how many free electrons), we arrive at the Saha equation for the ionization fraction
in thermal equilibrium:

Xe :=
ne

nb

=
np

nb

∈ 1 ,
1⇔Xe

X2
e

=


32

ϱ
⇀(3) ↽

(
me

T

)→3/2

exp

(
BH

T

)
. (1.93)

Once the Universe cools below the binding energy BH , the hydrogen atoms can form, but again due to the large number
of high-energy photons at a given temperature compared to baryons, the formation of neutral hydrogen atoms is further
delayed. If we define the completion of the recombination process as Xe = 10%, the Saha equation states

◁
→3/2

rec exp

(
13.6

◁rec

)
=

0.9

0.01


32

ϱ
⇀(3) ↽

→1 (
me

1 eV

)
3/2

= 3.2↔ 10
17
(⇁b)

→1
, (1.94)

where we defined
◁ :=

T

1 eV
↓ 1 + z

4250
. (1.95)

A numerical computation yields that the recombination takes place at

1 + zrec ↗
1367

1⇔ 0.024 ln⇁b

↗ 1249 , Trec = 0.3 eV ′ BH , (1.96)

a lot lower temperature than BH .
There are a few subtleties in the cosmic recombination. In a typical gas cloud, the recombination process takes place

by a direct capture of free electrons to the ground state (case A recombination) or cascades of electronic transition to the
ground state (case B recombination). Both of which are inefficient in the cosmic recombination, because both processes
result in high energy photons that ionize hydrogen atoms again. The main channel in the cosmic recombination is a
forbidden transition with ” ↗ 8.23 sec→1, so called, the two-photon decay, in which two photons are emitted by an
electronic transition 2s ↙ 1s, splitting the energy of Lyϖ. The other process is the cosmological redshift of Lyϖ photons.
The detailed numerical computation shows that the ionization fraction Xe = 1 at z ⇑ 2000 decreases as the Universe
cools, and it freezes out to a value Xe ↓ 10

→3 at z ∈ 200.
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1.5.2 Decoupling of CMB Photons and Baryons

• Decoupling of CMB photons.— The baryon-photon plasma (including leptons) maintains the equilibrium via Coulomb
interactions between photons and free electrons. At this low energy scales, the interaction is mainly elastic, and its
cross-section is described by the Thompson scattering as

ϑT :=
8ϱ

3
r
2

e ↓ 6.651↔ 10
→25

cm
2
, re :=

e
2

mec
2
= 2.818↔ 10

→13
cm , (1.97)

where the radius of an electron is defined in terms of the Coulomb potential. The Thompson scattering describes a
classical collision of ionized electrons. With higher mass, the Thompson scattering cross section for protons is smaller by
(me/mp)

2
= 10

6 and negligible, but the strong Coulomb interactions between free electrons and protons also keep the
protons in thermal equilibrium. As the Universe cools and free electrons recombine to form neutral hydrogen atoms, the
interaction rate in the baryon-photon plasma goes down:

ne = Xe ↽ nϑ , ”ϑ = neϑT c = 1.01
≃
⇁b◁

9/4
exp

[
⇔6.8

◁

]
sec

→1
, (1.98)

and the photons are released (or decoupled) from the plasma, when the interaction rate becomes lower than the expansion
rate:

H ↓ H0


#m(1 + z)

3/2
= 8.98↔ 10

→13
≃
⇁m ◁

3/2
sec

→1
, (1.99)

where we assumed that the Universe is deep in the matter dominated era. The decoupling takes place at

◁
→1

dec
↗ 3.927 + 0.074 ln

(
⇁b

⇁m

)
, Tdec = 0.26 eV , 1 + zdec ↓ 1100 , (1.100)

soon after the recombination of neutral hydrogen atoms takes place. Another way of understanding the decoupling of
photons is to compute the optical depth:

ς(z) :=

∫
z

0

dz
c dt

dz
neϑT ↗ 0.37

(
z

1000

)
14.25

, (1.101)

where the numerical values are approximations to the best-fit model prediction. The Universe is fairly transparent at low
redshift, and it becomes quickly opaque around zdec. A simple analytic calculation shows that the observed CMB photons
are indeed emitted at the peak of the visibility function defined as

P (ς) := ςe
→ω(z)

. (1.102)

which peaks sharply at z ↓ 1067 with a width %z ↓ 80. In other words, before the decoupling, the CMB photons were
in thermal equilibrium with baryons via Thompson scattering, and they are un-polarized and opaque. However, within a
narrow redshift width, they are released from the baryon plasma, and they are weakly polarized via last scattering.

• Decoupling of baryons.— Now we consider the decoupling of baryons from the baryon-photon plasma. While the
photons are released at zdec ↓ 1100, the baryons are kept in thermal equilibrium long after the decoupling of photons, due
to large number of photons per baryons. In general, the matter components cool as Tm → 1/a

2, faster than the photons,
but because of the tight coupling it goes as Tm ↘ Tϑ → 1/a until it is released from the photon plasma, i.e., energy
is transferred to the baryon plasma from the photon plasma by the Compton scattering of high-energy photons. For the
decoupling of photons, the relevant interaction rate was ”ϑ , and no energy transfer was made. For the decoupling of
baryons, however, we have to account for this energy transfer to compute the proper interaction rate ”e.

The typical average energy transfer due to one Compton scattering of high-energy photons is given by

%E =
4

3

(
ve

c

)
2

Ēϑ = 4

(
kTe

mec
2

)
uϑ

nϑ

, Ēϑ = hε̄ =
uϑ

nϑ

, (1.103)

and with larger number of photons nϑ , the energy transfer rate per unit volume is then

d0

dt
= %E nϑ”ϑ = 4neϑTuϑ

(
kTe

mec

)
. (1.104)
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Since free electrons are tightly coupled with free protons, this energy transfer is quickly shared with protons of typical
energy density

0m =
3

2
(ne + nb)kTe . (1.105)

Therefore, the proper interaction rate for electrons to be compared to the expansion rate is then

”e =
1

0m

d0

dt
= 8.9↔ 10

→6

(
Xe

1 +Xe

)
◁
4
sec

→1
, (1.106)

and the baryon plasma decouples at

1 + z = 6.8

(
Xe

1 +Xe

)→ 2
5

⇁
1/5

m ↗ 150 . (1.107)

Note that the Compton scattering conserves the number of photons, such that it can lead to a spectral distortion. How-
ever, the small baryon-to-photon ratio makes it negligible for the photon plasma. The free-free emission and absorption
(Bremsstrahlung) can create and destroy photons, such that it is needed to thermalize. However, this process is inefficient
at T ∈ 10

4 eV.
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