

Physical Cosmology

Spring Semester 2025 Prof. J. Yoo

Problem Set 7

Giovanni Piccoli
Matteo Magi

Issued: 11.4.2025

Due: 2.5.2025

Exercise 1 (4 points)

- a) Derive the gauge transformations of the metric and matter scalar perturbations α , β , φ , γ , U and v
- b) Check that the scalar variables φ_v , φ_{χ} , v_{χ} , φ_{δ} , δ_v and α_{χ} defined in the lecture notes are gauge-invariant.

Hint: You can solve a) by using that $\delta_{\xi}g_{\mu\nu}(x) = -\mathcal{L}_{\xi}g_{\mu\nu}$ and $\delta_{\xi}u^{\mu} = -\mathcal{L}_{\xi}u^{\mu}$ as described in the lecture notes. Having solved a), the fact that φ_v , φ_{χ} , v_{χ} and α_{χ} are gauge-invariant follows easily. To show that φ_{δ} and δ_v are gauge-invariant, you additionally need to consider the gauge-transformation of the stress-energy tensor, $\delta_{\xi}T_{\mu\nu}$, to determine how δP and $\delta \rho$ transform. Also, recall that $\bar{\rho} \propto a^{3(1+w)}$ and $\bar{P} + \bar{\rho} = \bar{\rho}(1+w)$.

Exercise 2 (4 points)

Consider a spatially flat inhomogeneous universe described by a metric fixed to the conformal Newtonian gauge:

$$ds^{2} = -a^{2}(1+2\psi)d\eta^{2} + a^{2}(1+2\phi)\delta_{\alpha\beta}dx^{\alpha}dx^{\beta},$$
(1)

evolving according to the Einstein equations. Derive the following relations

$$\Delta \phi = -4\pi G a^2 \bar{\rho} [\delta + 3\mathcal{H}v(1+w)], \qquad \phi + \psi = -8\pi G \Pi.$$
 (2)

Exercise 3 (2 points)

Show that on scales $k \ll \mathcal{H}$ the comoving-gauge curvature perturbation $\varphi_v = \phi - \mathcal{H}v$ is related to the Newtonian potential ϕ as

$$\varphi_v = \frac{5+3w}{3(1+w)}\phi. \tag{3}$$

Assume that $\Pi=0$ and use that $\dot{\phi}=0$ on super-Hubble scales.