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Exercise 1: Linear evolution of the inflaton fluid quantities (3 points)
a) Starting from the energy-momentum tensor of the inflaton field,
1
Ty = 049 0v9 — §9uvap¢ 6 — gV (), (1)
and considering scalar perturbations in the conformal Newtonian gauge,
1
ds® = —a*(1 + 2a)dn? + a*0,5(1 + 2¢)dz*da” uw=—-(1-a,-U%, (2)
a
derive the linear-order fluid quantities:
op=hop—ad®+0,Vip, op =0 — ad? — Vi, (3)

b) Derive the equation of motion for the linear perturbation in the inflaton field:
5o+ 3HSp + (8§,V+ $>5¢= (& + k) + (2¢ + 3Ho)x . (4)

Note that this equation is in Fourier space and k is the wavenumber. Also, recall that
k =3Ha — 3¢, and that o = —¢ in a universe without anisotropic stress.

Exercise 2: Linear evolution of the curvature perturbation (4 points)

We define the gauge-invariant Mukhanov variable ® as
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where K is the spatial curvature and the gauge-invariant variables ¢, and ¢, are defined in the
lecture notes. Using the Einstein equations, derive the governing equations for the Mukhanov

variable
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where e = dp — c2dp, ¢2 = p/p is the speed of sound, and II is the scalar part of the anisotropic
stress tensor.

Furthermore, assuming a flat universe with K = 0, show that the second equation can be
rearranged as
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This means that the comoving gauge curvature perturbation is conserved in the super horizon
limit (k — 0) if Z =0, i.e., if the initial conditions are adiabatic.

Exercise 3: Inflation parameters for a given model (3 points)

Derive the equations in Section 5.3.3 A Worked Example of the lecture notes for ao = 2.
Bonus Exercise ﬂ Numerical solution of a simplified Einstein-Boltzmann system
(5 points)

Consider a universe where all the matter behaves as CDM, and radiation (photons + neutrinos)
is described by a perfect fluid. The Einstein-Boltsmann system in the Newtonian gauge reads

() + kO, — — &
k k
8 + kv = -39
v+ Ho = —kd
(E*® + 3H(D' + HP) = 4nGa® (pmd + 4p,O0) ,

where the monopole O and the dipole ©; are the first two moments of the radiation distribu-
tion function.
Assume adiabatic initial conditions for each Fourier mode:
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with H computed at the time when the initial conditions are set. Notice that for every k, one
needs to choose 7 such that k/H < 1 (i.e., when the mode is outside the horizon). Since the
equations are linear, we have the freedom to re-scale ®() = 1.
Use the following cosmological parameters

i 1. i
, @g>:§¢<z>, ol =

0, =922x107°,  Q,=0314, Q=1-0,-Q,4, h=0674. (8

e Rewrite the Einstein-Boltzmann system using the e-folding time x = log a instead of the
conformal time 7.

e Solve numerically (e.g., using odeint in Python, or GSL in C, or implementing a Runge-
Kutta solver from scratch) the simplified Einstein-Boltzmann system for different values
of k€ (1074,10) h Mpc™!, setting the initial conditions at a” = 1075,

!The points obtained by solving this exercise are bonus, it means that with a full score this problem set is
worth 15/10. This exercise is heavily inspired by Ex. 2 of Sec. 8 (Sec. 7 in the first edition) of Dodelson’s
book "Modern Cosmology”.



Hint: pay attention to ©y and O, after matter-radiation equality: you could find numer-
ical instabilities. After this time, you can simply set the multipoles to zero since their
impact over the evolution of the gravitational potential is irrelevant.

Plot the temporal evolution of these quantities for some wavenumbers; try to see if you
can reproduce Fig. 8.6 (Fig. 7.6 in the first edition) in Dodelson’s book. On very small
scales (k ~ 1 — 10h Mpc™!), during radiation domination your solution should coincide
with the analytic expression:

o, k) = VD) g0 gy )

kn/v/3

Compare it with the numerical result, recalling that during radiation domination n =

1/H.

Compute the matter power spectrum at z = 0. Start by considering that at late times

the Poisson equation becomes
E*® = 47Ga*p,0 . (10)

Use this equation to obtain a relation between Pg(z,k) and Ps(z,k). The primordial

power spectrum reads
(z) 271'2 k na=1
Py (k) = 25 As | . — : (11)
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with Ay = 2.1 x 1072, ng = 0.966, kpivor = 0.05 h Mpc™'. Compute and plot the power
spectrum both for ® and 4.

Finally, you can compare your results with the solution of the full Einstein-Boltzmann
system computed by the code CLASS (http://class-code.net/). Its Python wrapper can
be easily installed in a Linux system by typing pip install classy in the terminal. Does
the overall shape agree? What is the main difference with your result? You can plot the
CLASS linear matter power spectrum with the following snippet:

import numpy as np

import matplotlib as plt

import classy

from classy import Class

LambdaCDM = Class ()

#setting the relevant cosmological parameters

LambdaCDM. set ({ :0.049, :0.265, :0.6732,
:3.0448, :0.96605})

#telling class that I want the matter power spectrum,

#and k_max = 10 h/Mpc

LambdaCDM.set ({ : , :103})

# run class

LambdaCDM. compute ()

#wrapping out the result of the computation:

#this gives the matter power spectrum at z = 0

def P_m_class_scalar(k):

h = LambdaCDM.h()

#needed to recover a result with the units of Mpc/h:

return LambdaCDM.pk(k*h, 0)*(h*%*3)

#we want a function able to take vectors as input

P_m_class = np.vectorize(P_m_class_scalar)

k = 10**np.arange(-4, 1, 0.1) #Mpc/h

plt.loglog(k, P_m_class(k))

plt.show ()




