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Nijenborghl, NL-9747 AC Groningen, The Netherlands 
(Received 17 September 1993; accepted 7 April 1994) 

This paper introduces an unconditionally stable, accurate, and efficient algorithm to solve the 
time-dependent Schrodinger equation for a particle moving in an inhomogeneous magnetic field. 
The algorithm is used to simulate a fundamental thought experiment of quantum mechanics: the 
magnetic Aharonov-Bohm effect. The calculations demonstrate that the Aharonov-Bohm 
prediction of the phase shift holds with great precision, even when the dimensions of the 
interferometer are comparable to the de Broglie wavelength of the particle. 

M4TrmllcTloN 

The use of modern circuit lithography has made it possible 
to manufacture solid-state devices of submicrometer di- 
mensions. Electrons can cross such systems before their 
motion is disturbed by crystal impurities or other scattering 
mechanisms and travel “ballistically” very much like elec- 
trons in vacuum do. This then opens the possibility of per- 
forming electron-optics experiments in solid-state devices 
and, eventually, of making solid-state switches that use the 
wave-mechanical nature of the electron motion. 

Once the characteristic length scale of the device be- 
comes comparable to the wavelength of the electrons, theo- 
retical methods of analysis such as geometrical (ray) optics 
or semiclassical approximations can no longer be justified.’ 
Then a proper theoretical description of the single-particle 
physics requires the solution of the Schriidinger equation. 
Computer simulation has proven to be a useful tool to gain 
insight into various aspects of electron motion in nanoscale 
devices.2*3 Among other things it has shown that under the 
stringent conditions mentioned above, semiclassical notions 
about for instance tunneling times or electron collimation 
do not survive a confrontation with numerical facts.4’5 

In experiments, a magnetic field is often used to probe 
the properties of a particular device. Also there is consid- 
erable experimental interest in metal-superconductor de- 
vices. Clearly in these systems the magnetic field is inho- 
mogeneous: Far enough inside the superconductor it is zero 
whereas in the metal it is not. The purpose of this paper is 
to introduce a numerical algorithm to solve the time- 
dependent Schrodinger equation (TDSE) for a particle 
moving in an inhomogeneous magnetic field. The algorithm 
uses a product formula, recently introduced by Suzuki.” 
The method is numerically stable and convergent under all 
circumstances. Moreover it is accurate to fourth order in 
both the spatial and temporal mesh size, efficient and well 
suited for implementation on scalar, vector and parallel 
computer architectures. In general, the TDSE approach is 
flexible in the sense that it can handle arbitrary geometries 
and (vector) potentials and therefore provides a unified 
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framework to investigate various physical problems. 
The emphasis of this paper will be on the algorithm 

and its application to a fundamental thought experiment of 
quantum mechanics: Scattering of charged particles by two 
slits, in the presence of a magnetic field restricted to a 
region from which the electrons are excluded (see Fig. 1, 
taken from Ref. 7). Applications to mesoscopic metal- 
superconductor devices will be presented elsewhere. 

Many textbooks (for a very short list see Refs. 7-10) 
on quantum mechanics use this example to introduce the 
concept of the Aharonov-Bohm (AB) effect.” As far as we 
know, a (numerically) exact solution of the corresponding 
Schrodinger problem has not been given. This example 
provides a stringent test of the algorithm. Usually, in theo- 
retical treatments of the AB effect, it is assumed that the 
electron beam can be split into two beams, the trajectories 
of which are dominantly classical.‘“-‘2 The simulation 
technique can be used to explore situations in which this 
assumption cannot be made: The case where the dimen- 
sions of the interferometer (the two slits) are comparable to 
the wavelength of the particle. Under these circumstances 
the diffraction patterns (shown below) cannot be fitted by 
the expression obtained in the semiclassical 1imit.s How- 
ever, as will be shown below, only minor modifications are 
required to get excellent agreement with the (numerically) 
exact results. 

LAl6aImM:THEoRY 

The approach taken in this paper is to simulate the motion 
of the particle by numerically solving the TDSE 

ifi & I@(t))=% I@(f)), (1.1) 

where IQ(t)) represents the state of the system described by 
the Hamiltonian 2. The formal solution of the TDSE is 
given by 

l~(m7))=e-im7.XI~(t=O)), (1.2) 
where m =O,l,... counts the number of time-steps r. 



For the present and future applications it is expedient 
to develop an algorithm that is correct up to fourth order, 
both in space and time. The accuracy of this algorithm is 
high whereas computational effort required remains reason- 
able (see below). The key concept in the construction of an 
unconditionally stable algorithm for solving the TDSE is 
the use of a unitary approximation to the time-step operator 
U(r)=e . -i7.jy l3 Product formulas provide a convenient 
framework to construct such approximations.‘3 Procedures 
to devise algorithms that are correct up to fourth order in 
the time step are given in Ref. 13. From practical point of 
view, a disadvantage of the fourth-order methods intro- 
duced in Ref. 13 is that they involve commutators of vari- 
ous contributions to the Hamiltonian. Recently Suzuki pro- 
posed a symmetrized fractal decomposition of the time 
evolution operator.t4 Using Suzuki’s formula, a fourth- 
order algorithm is easily built from a second-order algo- 
rithm by applying formula14 

~4(7)=~2(~7)~2(p7)~2[(1-4p)7;1~2(~7)~2(~7), 
0.3) 

where p=1/(4-4l”) and U,(T) is an nth order unitary ap- 
proximation to U(T), i.e., U(T)= U,(T) +@(T”+‘). Ap- 
proximants correct up to second order are obtained by sym- 
metrization of first order approximants,13,‘59’6 namely 

u,(7)=u:(7/2)u,(7/2), (1.4) 
where the UT is the transpose of U1. 

Usually the Hamiltonian can be written as a sum of 
different contributions which may or may not commute. 
The first-order approximant U,(T), corresponding to the de- 
composition 

.& .iv,, (1Sa) 
II=1 

is given by 
N 

u1(7)=e-‘r.x,e-‘~..“‘...e-i~~~= n e-i7.‘.Xn. (1Sb) 
n=l 

In general there will be many possibilities to write down 
different decompositions of a given Hamiltonian. From 
theoretical point of view, the choice of the decomposition is 
arbitrary. In practice however, this flexibility can be ex- 
ploited to considerable extent to tailor the algorithm to the 
computer architecture on which the algorithm will execute. 
Of particular interest are decompositions that vectorize ex- 
tremely well and have a large intrinsic degree of parallel- 
ism. 

I 

Having reached a point where it is impossible to pro- 
ceed with formal manipulations only, it is nevertheless im- 
portant to recognize that for any decomposition Eq. (1Sa) 
of X, the use of the unitary operator U*(T) guarantees that 
the algorithm defined by Eq. (1.3) is unconditionally stable 
and correct up to fourth order in the time step. 

The Hamiltonian of a charged (spinless) nonrelativis- 
tic particle in an external, static magnetic field B reads 

B=2; ---Y+- (p-eA)2+ V, 

where m* is the effective mass of the particle with charge 
e, p= -ir5V is the momentum operator, A represents the 
vector potential, and V denotes the potential. The simplest 
realization of the AI3 thought experiment” corresponds to 
the choice B=[O, O,B(x,y)] and V=V(x,y). Then the 
problem is essentially two-dimensional and the motion of 
the particle may be confined to the x-y plane. The poten- 
tial V(x,y) will be used to specify the geometry of the 
interferometer. For numerical work, there is no compelling 
reason to adopt the Coulomb gauge (div A=O). A conve- 
nient choice for the vector potential is A=[A,(x,y),O,O], 
where 

A,(x,Y) = - 
I ,’ W,Y)dY. (1.7) 

We will solve the TDSE Eq. (1.1) with Hamiltonian Eq. 
(1.6) with the boundary condition that the wave function is 
zero outside the simulation box, i.e., we assume perfectly 
reflecting boundaries. 

For computational purposes it is expedient to express 
all quantities in dimensionless units. Fixing the unit of 
length by h, wave vectors are measured in units of k = 24 
X, energies in E = h2k2/2m *, time in h/E and vector po- 
tential in units of eA/k Expressed in these dimensionless 
variables Hamiltonian Eq. (1.6) reads 

&Mx,Y) 
2 cY2 i 1 +ar’ +W,Y)- (1.8) 

An essential step in the construction of a numerical algo- 
rithm is to discretize the derivatives with respect to the x 
and y coordinates. For our purposes, it is necessary to use a 
difference formula for the first and second derivatives in 
Eq. (1.8) that is accurate up to fourth order in the spatial 
mesh size S. Using the standard four and five point differ- 
ence formulaI the discretized rhs of Eq. (1.8) reads 

1 
'xP/.ktt)=48n2@ (,l-is(ai,+~,+2,,)1~~+2,~~~~+~~+~~~~~-2,~+~~,~~1~~-2,~~~~ 

- 16 1-z (AI,~+AI+I,~ Q,+,,dt)-16 l+; (AI-I,~+A~ @l-~,ktt) 
I . 1 [ . 1 

+~~.~+2tt)+~~,~-2tt)-16~~,~+~tt)-16~.I,~-~tt)+(60+~2A~,~+48rr2~2V~,~)~~,~tt) +@t@, I 
(1.9) 

where cPt,,(t)=@(IS,kS,t) and A I,k=A,(ZS,kS). The discretized form Eq. (1.9) will provide a good approximation to the 
continuum problem, if S is substantially smaller than the smallest physical length scale. For the case at hand there are two 
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such scales. One is the de Broglie wavelength of the particle (which by definition is equal to X) and the other is the (smallest) 
magnetic length defined by li=mins(,,) IhleB(x,y)l. From numerical calculations (not shown) it follows that S=O.l 
min(l,Z,) yields a good compromise between accuracy and the CPU time required to solve the TDSE. 

Straightforward application of the product-formula recipe to expression (1.9) requires a cumbersome matrix notation. 
This can be done more elegantly in the following way.13 Defining 

Pw= 2 3 ~l,k(~)C;klo)r (1.10) 
I=1 k=l 

where L, and L 
(W, Eq. O.ld 

are the number of grid points in the x and y direction, respectively, and cItl; creates a particle at lattice site 
can be written as 

I~(m7))=e-‘m’Hl~(t=O)), 

where 

H=48~28,L~2 5 {[l--i8(A,,k+Al 
I=1 k=l 

Lx-l Ly 

x c 2 
I=1 k=l 

1-$h,k+A~+,,d 

LX L,-2 1 

‘2 c (c;cl.k+2+c~k+2cl,k&-$ 2 ‘5’ (CltLC,,k+l+C;tt+lCl,k)+48rr2SZ 
I=1 k=l I=1 k=l 

Lx Ly 

(1.11) 

1 
,k&?t,,kcl,k+&$! 

I 

1 
&I,kcl,k +4gT2$ 

l=l k=l 

where cl,{ annihilates a particle at lattice site (I&). 
Hamiltonian Eq. (1.12) describes a particle that moves 

on a two-dimensional lattice by making nearest and next- 
nearest neighbor jumps. This interpretation suggests that H 
should be written as a sum of terms that represent groups of 
independent jumps.13 A convenient choice is 

H,= 48;2& c 3 {[l-is(A~,k+AI+z,k)lC~kC~+z,k 
lcx, k=l 

X1=(1,2,5,6,9,10 ,... }, 

Hz= 48;2$3 c {[l-is(AI,k+A1+z,k)lClfkCl+z.k 
k=l id2 

X2=(3,4,7,8,11,12 ,... }, 

i8 
1 -z @l,k+Al+l,k) C;kCl+l,k 1 

i8 
I+, (b,k+k+I,k) &l,kCl,k ; 1 I 

X3=(1,3,5,7,9,11 ,... }, 
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(1.12) 

I 

ia 
1-y (A~,k+&+l,k) C;kCl+l,k I 

ia 
1 +y b%,k+A/+,,d &,kC,,k ; I I 

X4=(2,4,6,8,10,12 ,... }, 

H5= 4‘3;2# c 5 ( + Cl,kCl,k+2+C;tk+2Cl,kh (1.13) 
keXS ,=, 

X,=(1,2,5,6,9,10 ,... }, 

X,=(3,4,7,8,11,12 ,... }, 

X7=(1,2,5,6,9,10 ,... }, 

H8=$ kz 
8 

g (C~kCl,k+l+C;k+,Cl,k); 

Xs={3,4,7,8,11,12 ,... }, 

H,= 48.rj2az 3 2 (60+ 62ki;k+48T282v~,k), 
k=l I=1 



problems, the variables c, s, and r4 can be calculated in 
place. On the CRAY YMP this increases the CPU time used 
by the whole program by a factor of 2; 

and 
9 

U,(T)= JJ eviTHn, 
,I= 1 

(1.14) 

is the first-order approximant from which the algorithm, 
correct up to fourth order in the spatial (4 and temporal (7) 
mesh size, can be built. 

Inspection of H, for n=1,...,9 shows that each of the 
terms in the curly brackets commutes with all the other 
terms in the sum over k and 1. This is because each of these 
terms corresponds to a jump of the particle between a pair 
of two, isolated sites. For the purpose of implementation, 
this feature is of extreme importance.13 To illustrate this 
point it is sufficient to consider the first of the exponents in 
Eq. (1.14) and use the fact that all terms commute to re- 
write it as 

e-irH1= fj n 
k=’ /PX, 

eXp( 4;;;8z (,I -i6(A/,k+&+2,k)] 

(1.15) 

Furthermore, as each of the exponents in the product (1.15) 
is merely describing a two-site system, the exponent of the 
two-by-two matrix can be worked out analytically.13 In 
general 

exp( %?cLkc[p,kr+ ~a*clt;sktcl,k) 

x(a*-’ C;kCl’.k’ + a -‘clt;,k,cl,k)sin ?-laI. 0.16) 

Fortunately, the rather formal language used above is easily 
translated into a computer program. All that Eqs. (1.13)- 
(1.16) imply is that for each factor in product formula 
(1.14) one has to pick successive pairs of lattice points, get 
the values of the wave function at each pair of points and 
perform a plane rotation using matrices of the form 

cos +I -ia-’ sin 7101 
M= 

-ia*-’ sin ~[a[ cos 7lLyI . 
(1.17) 

For each of the nine exponentials,” the order in which the 
pairs of points are processed is irrelevant. Therefore, the 
computation of each of the nine factors can be done entirely 
parallel, fully vectorized, or mixed parallel and vectorized 
depending on the computer architecture on which the code 
will execute. 

Il. ALRORITHM: IMPiEMENTATlON 

Implementation of the algorithm is relatively simple. As an 
example, a FORTRAN program that computes e”HII*) is 
given below. The real and imaginary part of the wave func- 
tion are held in psi(2i-1) and psi(2i), respectively. The 
arrays cnnn(i), snnn(i), and rnnn(i), are used to hold 
COS 41 -i&h..++A~+z,k)lr sin 4 1 -i~(Al,k+A~+z,k)lT 
and ~(A,,k+A~+z,k)ll-i~(A~,k+A~+z,k)I-l 
sin 41 -i6(AI,k+A I+ 2.k) I, respectively. Of course, using 
these arrays costs memory. If memory usage would cause 

c ew(-~%) ,X1 
do n=1,3,2 
do j=O,2*Lx*Ly-l,LxtLx 
k=j/2-3 
do i=j+n,j+Lx+Lx-5,8 
k=k+4 
c=cnnn( k) 
s=snnn( k) 
r4=rnnn(k) 
rO=psi( i) 
rl=psi(i+l) 
psi(i)=rO*ctpsi(i+5)*s+psi(i+4)*r4 
psi(itl)=rl*c-psi(it4)*stpsi(i+5)*r4 
psi(i+4)=psi(it4)*ctrl*s-rO*r4 
psi(it5)=psi(it5)*c-rO*s-rl*r4 
enddo 
enddo 
enddo 

This code autovectorizes and autotasks on the CRAY YMP, 
and executes at a cruising speed of 200 Mflops per proces- 
sor (as do the codes that perform the calculations for 
H 2 ,. . .,H,). When it is run on more than one processor, 
there seems to be no significant loss of performance. Also 
on super-scalar processors such as the one in the IBM RS/ 
6000, the whole program executes at a speed which is close 
to the theoretical limit of the particular machine. For zero 
magnetic field the new code reproduces the numbers gen- 
erated by the old algorithm.13 Preliminary work on porting 
the code to the CM5 indicates that it will be possible to 
reach an efficiency of about 25% of the theoretical speed 
limit of that machine. 

II. APPLICATION: AHARONOV-BOHM BWCT 

In classical mechanics the motion of a charged particle is 
not affected by the presence of electromagnetic fields in 
regions from which the particle is excluded. In classical 
physics the vector potential A=(A, ,A, ,A,) and scalar po- 
tential are merely convenient mathematical tools from 
which the electric and magnetic fields may be calculated. 

In quantum physics the vector potential does acquire 
physical significance. According to Aharonov and Bohm,” 
the vector potential itself can lead to measurable effects 
even though the particle never enters the region where the 
electromagnetic field is nonzero. AB predict an observable 
phase shift of the particles wave packet. The existence of 
the AB effect and the interpretation of experiments de- 
signed to confirm its existence have been the subject of a 
long debate. A comprehensive review of the different view- 
points and experimental results is given in Ref. 19. Addi- 
tional information can be found in Refs. 20, 21. Ingenious 
experiments22~23 and theoretical workZ4 have given further 
support to the existence of the AB effect. 

Although there seems to be a general consensus that 
the AB effect does exist, theoretical modeling of many of 
the actual or thought experiments is not as simple as it may 
seem. Often there are (hidden) ad hoc assumptions and 
simplifications that require additional anal 
use of semiclassical approximations.“-’ Y 

sis, such as the 
The numerical 

thought experiment (see Fig. 1) reported on in this paper is 
free from all kinds of ambiguities but is, for obvious prac- 
tical reasons, less realistic from experimental point of view. 
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Figure 1. Layout of the two-slit interferometer. The initial wave packet, 
shown on the left of the two slits, moves to the right and is partially 
transmitted by the two slits of width s. The transmitted wave yields an 
interference pattern on a screen placed (far) to the right of the interfer- 
ometer The magnetic field B is nonzero in the interior of the center block. 

In recent years, the term AB effect is used in a more 
general context than the one described above. It is now 
common to invoke the concept of the AB phenomenon if a 
measurable property of a system appears to depend on the 
magnetic flux through the system. This has proven to be 
very useful to interpret man experiments on mesoscopic 

Y rings and other structures.25* 6 Clearly, it is straightforward 
to use the simulation technique introduced here to study for 
instance rings or junctions (this merely requires putting in 
the appropriate potential) but this is out of the scope of the 
present paper. 

The geometry of the two-slit apparatus is defined by 
three spatial regions of very large potential (VSE), as in- 
dicated in Fig. 1. Well within the middle block a local, but 
otherwise constant, magnetic field B=[O,O$(x,y)] is 
present. The magnetic field is shielded from the free-space 
region by a 2S thick wall of potential V. For V= 1 OOE the 
total, accumulated (in time) intensity inside the three 
blocks, is less than 10e9, which is below the numerical 
noise of the simulation itself. Therefore, for all purposes, 
the electron wave packet does not “feel” the magnetic field 
inside the middle block. 

Most calculations have been carried out using the vec- 
tor potential 

A=[A,(y),O,Ol, (2.1) 
where A,(y) = -J$ B(x,y ‘)dy ‘. Some calculations have 
been repeated using A=[O,A,(x),O] and, as required by 
gauge invariance, the numerical results of the probability 
distribution are the same. 

According to AB, ” the phase shift of the diffraction 
pattern is given by 

& 
I 

Beds, 

or, using the units adopted in this paper, 

(2.2) 

B m* E X2 
Tesla 
-=437q---xS’ 

e 
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(2.3) 

where S=(w-4S)(d-48) is the area in which B#O, and 
m, denotes the electron mass. 

The condition for a maximum shift is cp=(2k+ l)n, 
for k=O,?l,... . Taking k =0 and calling the corresponding 
magnetic field B, the phase shift can be written as 

cp B 
;==Bg. (2.4) 

For numerical purposes, this is a convenient way of ex- 
pressing the strength of the magnetic field. Typical values 
for GaAs devices are E =0.021 eV, A=335 A, 
m*/m,=0.067 yielding B/T=l.9cplrS. 

Conceptually, the simulation procedure is rather 
simple. First the initial wave packet is positioned far to the 
left of the two-slit interferometer. A convenient choice is 

W,y)ae 2~ikt.r co6 .9,+y sin B~)e-(x-x~~2/~~,Ze-~Y--Y~~2~2~2 

(i.5) 

i.e., a Gaussian wave packet centered around (xa,ya) with 
energy (Q1.x I@)=E and width a, and a,, in the x and y 
direction, respectively. In free space wave packet Eq. (2.5) 
moves in the (cos ea, sin 13,) direction. In practice, a spatial 
window is used to truncate the Gaussian. The resulting ini- 
tial wave normalized 
J]@(x,y)]’ dx IGk? Thb effect of this ap~%rna:~~ 
shows up in the sixth digit of the energy and momentum of 
the wave packet, in other words it is negligible. Taking 
a, = ay = 6h yields a Gaussian packet that is a good ap- 
proximation to a plane wave (in this case) and can still be 
accommodated by a simulation box (1024X X 5 1 IX) of rea- 
sonable size. Note that the existence of the AB effect does 
not depend on the particular choice of the wave packet, but 
is a result of the topology of the potential and the presence 
of a vector potential.” 

The second step is to solve the TDSE, using the nu- 
merical technique outlined above. In all calculations the 
spatial mesh size S=O.lX and the time step 7-=0.0312%/E. 
It takes at least 5120 time steps before the scattering of the 
wave by the two-slit potential becomes negligible. A typical 
run takes about 4 h of CPU time on the CRAY YMP, using 
a single processor. Increasing the size of the system and of 
the initial wave packet by a factor of 2 requires a factor of 
4 more memory but, more importantly, a factor of 8 more 
CPU time (the additional factor of 2 comes from the fact 
that it takes twice as long for the wave packet to travel a 
distance which is twice as large). 

By construction the norm of the wave function should 
be constant. Numerically, rounding errors lead to small de- 
viations (recall the algorithm is stable under all circum- 
stances) which are less than 10e8 in the present case. The 
energy E=(Q)(t) 1% I@(t)) and the spread on the energy 
(@(t)l.X*[@(t))-E* are constant up to at least 5 digits. 

The final step is to analyze the wave packet transmit- 
ted by the two-slit arrangement. For the present purposes, it 
is not of great interest to compute the diffraction pattern at 
a screen placed near to the interferometer. Instead it is more 
appropriate to calculate the interference fringes on a screen 
at infinity. This can be done in the following way.5 After the 
scattering event has taken place, the transmitted (and also 
the reflected) wave packet moves in free space [for a vector 
potential of the form Eq. (2.1)]. Then the angular distribu- 
tion of intensity P(8) on the screen at infinity can be writ- 
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Figure 2. Diffraction pattern (dashed line) of a two-slit interferometer of 
dimensions s =A and d = w= 4X. The angle of incidence 8, =O. The mag 
netic field B =O. Solid line: theoretical result calculated from Eq. (2.7) 
with (~‘0. 

ten in terms of the Fourier transform of the transmitted 
wave packet.’ For the case at hand the normalized P(0) is 
given by 

p(B~,IXI~(4A7~~=~r tan O=T)l* dq, 
J-;;l%x,qy=w= nl*4, ’ 

(2.6) 

where I&) is the Fourier transform of IQ) and T is the time 
it takes for the transmitted wave packet to move freely (i.e., 
to propagate until there is no more scattering). 

Some representative diffraction patterns of a two-slit 
interferometer of dimensions s =A and d= w= 4X (see Fig. 
1) are shown in Figs. 2-6 (dashed lines), for magnetic 
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Figure 3. Diffraction pattern (dashed line) of a two-slit interferometer of 
dimcnsiorn s =A and d = w= 4h. The angle of incidence t&=0. The mag- 
netic field B = B,/2. Solid line: theoretical result calculated from Eq. (2.7) 
with (p=1T12. 

0 

Figure 4. Diffraction pattern (dashed line) of a two-slit interferometer of 
dimensions s =X and d = w = 4X. The angle of incidence t&=0. The mag- 
netic field B = B,. Solid line: theoretical result calculated from Eq. (2.7) 
with (p=7~. 

fields B=0,B0/2,B,,3B,/2,2B,, respectively. Also 
shown (solid lines) are the corresponding diffraction pat- 
terns calculated from 

P(8)= 
sin[2d7r( sin e- sin 19,) + cp] 
sin[drr(sin e-sin eo)+cp] 

(2.7) 
which, for zero magnetic field (cp=O), is not the Fraunhofer 
diffraction formula for two slits.’ The difference is in the 
second factor where, compared to the Fraunhofer result, the 
dependence on the angle of incidence (sin B,,) is missing. 
Numerous numerical experiments for two and multislit 
interferometers2’ of which the dimensions s and d are com- 
parable to the wavelength A lead to the conclusion that Eq. 
(2.7) provides a much better fit to the exact numerical re- 

1 
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Figure 5. Diffraction pattern (dashed line) of a two-slit interferometer of 
dimensions s =X and d = w = 4X. The angle of incidence t&=0. The mag- 
netic field B = 3B0/2. Solid line: theoretical result calculated from Eq. 
(2.7) with (p=3vl2. 
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Figure 6. Diffraction pattern (dashed line) of a two-slit interferometer of 
dimensions s =X and d = w = 4X. The angle of incidence %, =O. The mag- 
netic field B = 28,. Solid line: theoretical result calculated from Eq. (2.7) 
with cp=2~. 

suits than the Fraunhofer expression does. As already men- 
tioned in the Introduction, deviations from simple diffrac- 
tion theory can be expected whenever the wavelength 
becomes comparable to the typical size of the scattering 
object and the numerical experiments presented here are 
clear-cut examples of this phenomenon. 

From Figs. 3-6 it is also clear that even when the 
magnetic field is present, Eq. (2.7) remains in good quali- 
tative agreement with the numerical data. At the same time, 
this yields a (numerical) proof of the existence of the AB 
effect in a regime where a semiclassical approach is not 
valid. Another proof, not relying on Eq. (2.7) is given in 
Fig. 7 where the diffraction patterns for B=O (solid line) 
and B=Bo (dashed line) are superimposed. According to 
AB,” maxima (minima) in the diffraction pattern for 
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Figure 7. Diffraction patterns of a hvo-slit interferometer of dimensions 
s =X and d = w = 4X. The angle of incidence %,=O. Solid line: magnetic 
field B =O. Dashed line: magnetic jield B = B, . 
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Figure 8. Diffraction patterns of a two-slit interferometer of dimensions 
s =h and d = w = 4h. The angle of incidence %,,=?rl9. Solid line: magnetic 
field B =O. Dashed line: magnetic field B = B, . 

B= B0 (or cp=m) should appear at the positions of the 
minima (maxima) in the diffraction pattern for B=O and 
indeed, as shown in Fig. 7, this is the case. 

All the results shown in Figs. 2-7 have been obtained 
using an initial wave packet with an angle of incidence of 
&=O. Some typical results for another angle of incidence 
(0,=7r/9) are shown in Fig. 8. Also these numerical results 
confirm the existence of the AB effect, as do similar calcu- 
lations for other choices of $, s, d, and w (not shown). In 
addition, the results depicted in Fig. 8 provide a clear ex- 
ample where expression (2.7) is not a good approximation. 
Indeed, the minima of Eq. (2.7) correspond to zero intensity 
but in the exact solution this is definitely not the case (de- 
tailed inspection of the other figures confirms that this is a 
general feature). The fact that Eq. (2.7) can only be used to 
estimate the position of maxima and minima of the diffrac- 
tion pattern is just another manifestation that simple dif- 
fraction theory cannot be employed if the dimensions of the 
interferometer are comparabie to the wavelength of the in- 
cident wave. 
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