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1. Introduction 

The time evolution of a state of a non-relativistic quantum-mechanical system is governed by 
the time-dependent Schrodinger equation (TDSE) 

Wr, t) 
at 

= -iH\k(r, t), 

where H is the Hamiltonian of the model system, ‘k(r, t) is the normalized, complex-valued 
wave function, \k( r, 0) is the initial state at time t = 0, and units are such that A = 1. The 
solution of the TDSE contains all dynamical information on the system. Methods to solve the 
TDSE emerge as important tools to simulate for instance molecular [1,2] and nuclear collisions 
[3-51, atom-surface interactions [6,7], high-resolution electron-microscopy image simulation 
[8,9], light propagation in optical fibers [lo-141, electron motion in disordered materials [15-181, 
etc. Common to all these simulations is that many of the model properties can be unraveled by 
examining the propagation of wave packets. 

For systems evolving in continuum space, the TDSE belongs to the class of linear parabolic 
partial differential equations. Although it is easy to see that the formal solution of (1.1) is 

‘k( r, t) = e-itHYP( r, 0), (14 

in general the explicit expression for the solution of such equations cannot be written down in 
closed form and one has to resort to numerical techniques to solve the initial value problem. 
Usually this is accomplished by means of finite-difference methods [19]. 

Consider, for example, a particle moving on a line of length X. In appropriate units its 
Hamiltonian is given by 

J+ - 
d2 

- + JW, 
dx2 

(l-3) 

where V(x) represents the potential at position x. The wave function of the particle 4(x, t) = 0 
unless 0 < x < X. Obviously, numerical solution of (1.3) requires some discretization of con- 
tinuum space. Let 6 by the mesh length in the x-direction and approximate $J( x, t) by G,(t) for 
IS < x < (I+ 1)s. Since free-boundary conditions have been adopted, J/[(t) = 0 if 1 G 0 or 
I > L + 1. Replacing the second derivative with respect to x by its simplest finite-difference 
approximation (d’J/(x, t)/dx2 = S-2[ J//+i( t) - 2$,(t) + +,_1( t)]) yields the TDSE 

$htt) = -i{ -~-2[#,+dt) +h&)l + wW)}~ 

with u, = V( IS) + 2K2. In all practical situations the number of mesh points L + 1 will be finite. 
Hence (1.4) can be written in matrix form 

W(t) - = -ill+(t), 
at 

0.5) 
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where W> = (W), . . . y J/L+lW) T is a column vector of length L + 1 and H is the t&diagonal 
matrix 

H= 

Ul 
-6-2 

-r2 l.5 

UL 
-6-2 

-8-2 
uL+l 

(1.6) 

The numerical solution of the difference equation (1.4) will be an approximation to the solution 
of the TDSE with Hamiltonian (1.3). The accuracy of the approximation is, in this case, 
determined by the mesh length S. By construction the approximate solution will converge to the 
continuum result if 6 + 0, i.e. the numerical method is “consistent” [19]. 

Difference equation (1.4) can also be interpreted as the TDSE for a particle moving on a chain 
of L + 1 lattice sites. Most conveniently such a system is described to be a tight-binding 
Hamiltonian 

H=& 

L+l 

ch+, + Gh) + W C vb (1.7) 
I=1 I=1 

where c,‘( c,) creates (annihilates) a particle at the site 1, nl = c:c, counts the number of particles 
at site 1 (i.e. n, = 0, 1 since here there is at most one particle), V sets the kinetic energy scale and 
WeI is the potential at site 1 felt by the particle. Although not essential, the operators CT and cl 
are taken to obey fermion operator algebra, i.e. { CT, c,? } = { cl, c,?} = 0 and { c,‘, c,! } = a,,,!. A 
state 1 Q(t)) of this single particle system can be written as 1 a(t)) = ZfTri@,(t)c,? IO) in which 
IO) denotes the vacuum state. Substituting this representation in the TDSE 

a@(t) ~ = -iH@(t), 
at 

with H given by (1.7) yields 

k@,(t) = -i{V[@,+,(t) + @l_I(t)] + We,@,(t)}; l= l,..., L+ 1, (1.9) 

and because of the free boundary conditions Gli,( t) = 0 if 1~ 0 or I> L + 1. Comparison of (1.4) 
and (1.9) learns that both formulations are equivalent provided we set V= --aW2 and WeI = u,. 
The intimate relationship between discretized Schrijdinger equation (1.4), matrix equation (1.5) 
and lattice model (1.8) shows that the latter, properly generalized to the d-dimensional case, may 
be regarded as a generic model, encompassing both genuine lattice models themselves as well as 
the (simplest) difference approximation to continuum problems. In chapter 2 it will become clear 
that the introduction of the fermion-operator notation is instrumental for the construction of 
product-formula methods. Therefore lattice model (1.7) and its d-dimensional generalizations 
will be the starting point in the development of these algorithms. 
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The fundamental problem hidden in for instance matrix equation (1.8) is that if H cannot be 
brought into diagonal form, either by analytical manipulations or by brute force numerical 
diagonalization, it is impossible to compute the action of the propagator eeitH on an arbitrary 
wave function. Therefore the first step in the development of any numerical method for solving 
the TDSE is to propose an approximation for the time-evolution operator eeiTH for a well-chosen 
time step 7. Integration of the TDSE is then accomplished by repeated application of this 
approximate time-step operator. 

The quantum mechanical nature of the problem requires additional attention. For example it 
is important to make sure that the method being used conserves the total probability, i.e. 
C;Li 1 t,b,( t) I* = 1, since otherwise the numerical method itself would be responsible for creating 
or annihilating “particles” in the course of the integration process. This problem can be solved 
formally by demanding that the approximate time-step operator is unitary. Then the norm of the 
wave function will be conserved. In addition, unitarity of the time-step operator implies 
unconditional stability of the numerical method. Indeed, if U denotes the time-step operator that 
satisfies UUt = 1 then ]I U II = 1 whereas a necessary and sufficient condition for stability is 
II U II G 1 [19]. In practice, unitarity of the time-step operator guarantees that errors due to the 
approximation scheme itself and also rounding errors, always present in floating-point computa- 
tions, cannot grow indefinitely. 

One of the most popular methods to solve the TDSE is the Cranck-Nicholson (CN) method 
[19-211. In this scheme, the time-evolution operator eeiTH is approximated by a time-step 
operator of the form 

Uc,( T) = (1 - iTH/2)(1 + irH/2)-‘. (1.10) 

Since UC, is unitary, this scheme is unconditionally stable [14,16]. 
The presence in (1.10) of the operator (1 + iTH/2)-l makes the CN method of the implicit 

type. A major drawback of the CN method is that each time step requires the inversion of the 
matrix 1 + iTH/2, a highly undesirable feature since in general the number of arithmetic 
operations will scale with (L + 1)3d, where here and in the rest of this paper d stands for the 
dimensionality of the system. In spite of the fact that in many cases the matrix to be inverted can 
be reduced to tri-diagonal form, for systems of dimensionality larger than one, implicit schemes 
such as the CN scheme are often very costly to use. This seems to hamper the application of the 
CN method to problems in two or three space dimensions and depending on the problem at 
hand, also puts considerable demand on memory and CPU time for systems of lower dimen- 
sionality. Explicit, stable methods of the same order of accuracy should be preferred over the CN 
method. However, most of these explicit schemes turn out to be only conditionally stable 
[22-241. Therefore it is worthwhile to search for explicit, unconditionally stable algorithms, not 
necessarily based on rational approximations [19] to the matrix eViTH. 

In this paper a new family of algorithms for solving linear parabolic differential (difference) 
equations is introduced. The main idea is to use generalizations of the Lie-Trotter product-for- 
mula [25-301 (PF) in place of rational approximations, to construct systematic approximations 
to the exponential operators. To considerable extent this approach has been inspired by methods 
originally developed to perform Monte Carlo simulations for quantum lattice models [31-331. In 
particular, symmetrized versions [34,35] of PF’s (SPF’s) have found to be of central importance 
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in the development of algorithms based on PF’s. In addition they provide a convenient setting 
for proving the stability and convergence of such algorithms. 

The underlying idea of this approach is the following. In all cases of practical interest, the 
Hamiltonian can be written as a sum of operators H = C&,H, in such a manner that each H4 is 
sufficiently simple so that it can be diagonalized easily, i.e. analytically. The time-step operator 
e -i7H is then approximated by some ordered product of exponents of - irH,. Such approximate 
time-step operators are unitary and therefore algorithms based on them are unconditionally 
stable. Since the eigenvalues and eigenvectors of H4 are known, calculation of eeiTHq is 
straightforward, at least in principle. In practical applications the choice of the H4’s and the SPF 
is of crucial importance because it will determine the efficiency of the algorithm. 

Completely different viewpoints and motivation have led to a similar evolution of high-resolu- 
tion electron-microscopy (HREM) image simulation techniques. There the objective is to 
compute the propagation of electrons througha crystal foil. Although a first-principle description 
of the interaction of the relativistic electron with the material necessarily starts from the Dirac 
equation, it is generally accepted that the problem can be simplified such that it reduces to the 
solution of a two-dimensional Schrodinger equation [36]. Already in the early development of the 
numerical methods for solving this equation it has been recognized that numerical techniques 
based on the so-called slice methods [37,38] are the most efficient. For a recent review and 
comparison of various methods see ref. [9]. In this approach the specimen is thought to consist of 
a number of two-dimensional slices, and the electron propagator is replaced by a suitable 
“short-time” (or thin slice) approximation for the particular slice. Given the wave function at the 
entrance plane, integration of the TDSE is accomplished by repeatedly letting the approximate 
electron propagator act on the wave function. The multi-slice method is a special case of a 
second-order SPF algorithm. 

Likewise similar progress has been made in numerical methods to compute the propagation of 
light in optical fibers [lo-141. In this instance the corresponding wave equation is such that the 
index of refraction does not depend on the distance along wave guide. This property has been 
used to establish a close relationship between the solution of the Helmholtz equation and that of 
the corresponding Fresnel form of the wave equation [lo-141. As the latter is of the parabolic 
type, it is easier to solve than the elliptic Helmholtz equation. It has been demonstrated that the 
so-called split-operator FFT method is very effective in solving such problems [lo-141. As a 
matter of fact this technique is identical to the multi-slice FFT method used in HREM image 
simulation [9], and consequently it is also an example of a particular SPF algorithm. 

This paper is largely intended as an original contribution rather than a review. It is presented 
in this journal in the hope that it will reach a much more diverse audience than otherwise would 
have been possible and that it will stimulate further research in and application of SPF 
algorithms. As not much research on this subject has been carried out, a large part of this paper 
is devoted to the mathematical foundation (chapter 2) and implementation (chapter 3) of 
SPF-based algorithms. A short note on part of the material presented in this paper has been 
published elsewhere [ 391. 

In the literature a vast number of different integration schemes has been proposed, each one 
having its own merits and drawbacks. Therefore it would be a very laborous task to compare 
them all with the SPF algorithms consequently it was decided to compare SPF algorithms with 
only one standard technique, the CN method. A quantitative investigation of the performance 
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and efficiency of SPF schemes as well as a detailed comparison with the CN approach is given in 
chapter 4. Chapter 5 discusses applications to three different systems, relevant to condensed 
matter physics. They serve to illustrate that SPF algorithms allow us to explore the time-depen- 
dent behavior of systems on length and time scales that are substantially larger than previously 
accessible. 

Although the emphasis of this paper is on SPF methods for solving the TDSE, the same 
approach works equally well for “imaginary-time” problems. Such diffusion equations can also 
be solved by SPF algorithms. The details of this are given in chapter 6, where it is also shown 
how a SPF scheme and the variational principle can be combined to yield a novel method to 
compute simultaneously a number of low-lying states also in cases where the ground state is 
nearly degenerate. Finally, chapter 7 briefly considers some problems for further study and 
contains the conclusions. 

2. Theory 

This chapter deals with the theoretical concepts underlying the SPF algorithms. The theory 
will be presented in several steps. In section 2.1, a second-order real-space (RS) symmetrized 
product-formula (SPF) method for a one-dimensional (1D) system is introduced using conven- 
tional matrix notation, illustrating the principal ideas of the approach. Extending these concepts 
to d-dimensional systems and to other second-order or fourth-order schemes requires a more 
appropriate notation than matrix representations. In order to be able to express the theoretical 
ideas in a well-defined and compact form, it has been found advantageous to use fermion-oper- 
ator language. The equivalence between this formalism and the matrix representation rests on the 
well-known fact that a matrix can always be written as a tight-binding-like Hamiltonian of a 
single particle system, as Shown explicitly for the 1D case in the Introduction. 

Readers who are not familiar with the use of fermion operators should not worry about having 
to digest complicated many-body theory. In this paper fermion operators are only used to 
represent matrices which otherwise could not have been written down in an orderly manner, and 
to allow straightforward calculation of commutators of these matrices. 

In section 2.2, several second-order algorithms are presented. The scheme presented in section 
1 is reconstructed using fermion-operator notation. It is hoped that this will help the reader in 
getting more acquainted with the notation. It is then shown how to extend the SPF approach to 
d-dimensional systems. Finally in section 3 several fourth-order methods are introduced. It is 
here that the use of fermion-operator algebra proves to be essential. 

In these three sections emphasis is on the construction of algorithms that do not require 
Fourier transforms but directly operate on the wave function in its RS representation. The goal is 
to devise explicit algorithms of which the number of operations per time step is proportional to 
the number of lattice (or mesh) points. An additional requirement is that they should easily 
vector&e and be highly parallel. 

As already indicated, in each section the theory will first be developed for the 1D case because 
this simplifies the notation considerably and brings out the essential points more clearly. The 
modularity of the SPF approach will allow straightforward extension to the d-dimensional case. 
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General expressions for operators entering the formalism can be found in appendix B. In order 
not to get completely lost in a zoo of indices the theory will be developed for the case of a 
hyper-cubic lattice and nearest-neighbor coupling only. 

Apart from unitarity (see chapter l), another important property of the approximate time-step 
operator is its “local” error, i.e. the maximum error made in taking a single time step. As usual 
this error is measured by computing RMS(U) = ]] eeiTH - U I]. Note that according to this 
definition (see appendix A), RMS(U) is precisely the maximum of the Root-Mean-Square 
(RMS) error of the approximate wave function qv( 7) = U+(O) to the corresponding true value 
$,,,,t( r) = e-lTH$(0), taken over all (normalized) values of the initial state q(O). The maximum 
“global”error made by taking m of such steps is then simply mRMS(U), as shown in appendix 
A. 

We illustrate the use of these concepts by taking the Cranck-Nicholson (CN) method as an 
example. In the CN approach the propagator eYiTH is replaced by the rational approximation 
(1 - irH/2)(1 + irH/2)-’ [14]. From (A.8) it follows that the local error is bounded by 
RMS(CN) 6 r3 ]I H (1 3/12, reflecting the fact that the local error of the CN method is 0( r3), for 
r sufficiently small. The global error for m steps is then bounded by tr* II H II 3/12 where 
t=mr. 

In the following sections several possibilities to decompose H will be examined. In general, the 
simplest product-formula (PF) approximation consists of replacing eeiTH by [27,28] 

(2.1) 

where H = C&,H,. It can be shown (see appendix A) that [30] 

showing that this approximation is correct to order r. As it is easy to improve the order of 
correctness in r without affecting the simplicity of the approximation, algorithms based on (2.1) 
are not of great interest, especially when one recalls that the CN method is already correct to 
order r*. The reason for introducing (2.1) here is that it will be used later in the construction of 
the fourth-order methods. 

2. I. Second-order method: matrix formulation 

In chapter 1 it was shown that the numerical solution of typical 1D TDSE’s can be cast into 
the form 

w 0) ~ = -ill+(t), 
at (2.3) 
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where $~(t)=(#i(t),..., $=+i( t))T denotes a (column) vector in a (L + 1)-dimensional space and 

H= 

wq v 
V WE2 v 

V we, v 

V we, v 
V WC L+l 

3 (2 4 

is a tri-diagonal (L + 1) X (L + 1) matrix representing the (discretized) Hamiltonian. The formal 
solution of (2.3) is given by 

t)(t) = e-'"'+(O), (2.5) 
where q(O) stands for the wave function at time t = 0. The numerical problem to be solved is to 
compute the exponent of the matrix H without diagonalizing the matrix H explicitly. 

Second-order schemes are obtained by symmetrizing first-order formula (2.1) as follows 

[34,351 

e -irH _ _ e-irH/2 e-irH/2 
“E2(7, { 

In most practical situations it suffices 

H,}) = J%( T/L { f&})Elt( 7/L { H,j). 

to consider the case where H = HI + H2. Then 

(2.6) 

E2(T, H,, H,) E e-i7Hl/2 e-iTHz e-i%/2, (2.7) 
is a unitary approximation to eeiTH and just as in the first-order case, one can obtain an 
upperbound for the error of this approximation namely 

lleeiTH - E2h 4, ff,) 11 G T’( II [HI, [H,, H2 I II +2 II [H,> [HI, H2]] 11)/24, (2.8) 

as demonstrated in appendix A. As (2.8) indicates, the error per time step is at most of order 73, 
the same as for the CN scheme. There is however an essential difference. As shown by (2.Q the 
error due to the second-order SPF approximation vanishes with 11 [H,, H2] 11. It is also worthwhile 
to note that in the CN method the energy is conserved within numerical accuracy of the 
arithmetic operations, whereas in the second-order scheme (2.7) this is not the case since in 
general [H, E2( T, H,, H2)] # 0. 

Although upperbounds such as (2.8) are general and powerful theoretical tools, in actual 
applications it is difficult to use them to estimate the minimum value of 7 required to guarantee 
a specified accuracy. The reason is that in most cases they are much too crude and tend to 
over-estimate the actual errors considerably. In chapter 4 it will be demonstrated that in typical 
situations, the error scales with the time step and the number of time steps in accordance with 
the dependence on time step and number of time steps of the corresponding upperbound. Hence 
the knowledge of the upperbounds on the error is very useful for estimating the accuracy of a 
particular calculation on the basis of previous data. 



H. De Raedt / Solving the time dependent Schrb’dinger equation 

One way to construct a second-order algorithm is to choose [40] 

e -irH _ _ e-ir(Ho+Hd z ,F(~, H,, H,) = e-irHo/2 e-irHE e-irHd2, 

where 

Ho= 

and 

10 0 
0 WE2/2 v 

V WC,/2 0 

0 *. 0 
HE= 

0’ we,-,/2 V 

V WE=-r/2 0 

0 WC,/2 v 

\ V WC Lfl 

we, v 
V WC,/2 0 

0 WC,/2 v 

V WE4/2 0 

0 *. 0 

0 WC,_,/2 v 

V We,/2 0 

0 0 

\ 

> 

I 

11 

(29 

(2.10a) 

3 (2.10b) 

are tri-diagonal matrices that are block-diagonal, i.e. build up from 2 X 2 matrices. For simplicity 
of notation it has been assumed that L is even. In this section the subscripts 0 (odd) and E 
(even) have no particular meaning but are taken as such to keep the notation used here 
consistent with that of the following two sections. The block-diagonal structure of Ho or HE 
simplifies the calculation of e-i’H~/2 and eeiTH E tremendously, since the problem has essentially 
been reduced to the exponentiation of 2 X 2 matrices of the form 

A,= (7 ;y; 1=1,...,1+1, (2.11) 

where W, = WC,, W, = We/2 for 2 G I,< L and W,,, = WC~+~. This is easily done by hand. 
Denoting the 2 x 2 matrix I?,( 7) = eCiTA ’ the second-order approximant E,( 7, Ho, HE) can be 



12 

written as 

H. De Raedt / Solving the time dependent Schriidinger equation 

‘B,(7/2) 0 . . . 0 

0 B&2) 

&(r, Ho, H,) = : 

BL-lW2) 

\ 0 . . . 0 

I 

: B;& 0 
0 

x ; 0 B4W 

0 . . . BLb) 

/B,(7/2) 0 . . . 

0 B, ( r/2) 

x : 

BL-lb/21 

\ 0 . . . 

0 

0, 

(2.12) 

Apparently the simple break-up H = Ho + H, leads to a so-called RS algorithm because at no 
stage it requires a Fourier transform of the wave function. 

In d dimensions one can proceed in exactly the same manner. Write the Hamiltonian as a sum 
of 2d matrices H = Cid=,H, and use (2.7) recursively to approximate [35] eeiTH by e-i7Hl/2 
. . . e -irHZd_-1/2 e-irH2d-1/2 . . . e- i7H1’2. In order to be useful in practice it should be possible to 
bring each of the matrices Hq into the same form as (2.10) by interchanging rows and columns. 

What has been accomplished in this way is to replace the calculation of eeiTH by a much 
simpler, albeit approximate, expression which involves multiplication of the vector G(t) = 

($1(t),*.*, qL+i( t))T by very sparse matrices only. To be more precise, for complex 2 X 2 
matrices B,, the number of operations required to compute E2( T, Ho, HE) $( t) is 12L multipli- 
cations and 8L additions. For a d-dimensional system each of these two numbers has to be 
multiplied by d. 

It should be clear by now that the matrix formulation is quite cumbersome to use, even for 1D 
problems. Extending the ideas put forward in this section to multidimensional systems would be 
nothing but a tedious exercise in writing down big matrices. Moreover it is conceivable that it 
would be hard to keep apart the ideas underlying the SPF approach and complications solely due 
to the desire to stick to the more conventional matrix notation. The reader interested in knowing 
how to extend the formalism to d-dimensional problems and higher-order SPF’s should first get 
acquainted with the much more compact fermion-operator language and then continue with the 
next section. We stress that the use of fermion-operator algebra is forced upon us mainly because 
of its notational compactness and simplicity. 
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2.2. Second-order methods 

Let us start by considering the simplest example, namely a free particle moving on an 
open-ended chain of L + 1 sites. Its Hamiltonian is given by 

L 

(2.13) 

A single-particle state can be represented as 

L+l 

P(t) > = c w> II >, (2.14) 
I=1 

where 11) = c;' IO). To compute the wave function at time t + T from the wave function at time 
t, we must be able to calculate the action of the propagator eCiTK on an arbitrary state I Q(t)). 

Obviously, direct calculation of the propagator is feasible of the eigenvalue problem can be 
solved. This is of course the case for an operator of the form (2.13) which can be diagonalized by 
Fourier transformation. Putting 

Ik )=/&LilsinslI ); k=l,...,L+l, 
I=1 

it is readily shown that 

-irK _ e - “i’ I k ) exp( -ZirVcos&)( k 1, 
k=l 

and that propagation with eeiTK can be written as 

L+l 

e -i’Kp(t) ) = c @(t+7) 11’ > 
I’=1 

L+l 

= c II’ Xl 
I,l',k=l 

‘Ik) exp( -2i7Vcos&)(kll)@,(t), 

or, equivalently 

L+l 

@,<(t + T) = & C sin&exp( -2iTVcos& 
k,l=l 

sin&al(t). 

This can also be written as 

QIt(t + 7) = Fil exp -2irVcos& 
( i )F,{W)~)~ 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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where Fs{ } denotes the (discrete) sine-transform and FL'{ Fs{}} = 1. As is well-known, such 
transforms are most effectively performed by means of the Fast-Fourier Transform (FFT) 
algorithm. 

In practice (2.19) means that we have to perform the FFT on the set of data { @[(t)}, multiply 
each element of the transformed set by e-2i’i”cos[nk/(L+2)1 and perform another FFT to transform 
back to the coordinate representation. The number of operations required by this algorithm 
scales with the number of lattice points as L( a + b log L), where a and b are constants. 

If the original problem is formulated in continuum space rather than on a lattice, one only has 
to replace in (2.19) e-2iTr’cos[nk~(L+2)1 by exp[(i71//2)(Trk/(L + 2))*] as usual. This then leads to 
the split-step FFT [lo-14,411 or multi-slice FFT [9] method. 

As FFT routines usually require the number of points to be a power of 2, this may limit the 
range of applications. Furthermore, it is always worthwhile to search for methods that scale with 
L instead of L log L for large L. Such an algorithm can be devised by breaking up the 
Hamiltonian in local two-site contributions. Assuming that L is even for purely notational 
convenience, K can be decomposed as K = Ko + K, where [40] 

L/2-1 

&I = v c (c2fi+lc2[+2 + &+2C21+A 
I=0 

(2.20a) 

and 
L/2-1 

KE = v c w/+*c21+3 + 4+3c21+2). 
I=0 

(2.20b) 

The subscripts 0 and E refer to the odd and even sublattice, respectively. Invoking second-order 
formula (2.6) the free-particle propagator ePiTK can be approximated as 

e --irK= ,172(T, K,, KE) = e-iTKd2 e-irKE ,-irK,/2. (2.21) 

Noting that K, ( KE) is the sum of commuting two-site operators immediately leads to 

L/2-1 L/2-1 
e-iTKo/2 e -irKE e [p+ e-iTKzl+l/* j-J e-irKzI+z 

where 

K,= V(C,+C~+, +&cl). 

(2.22a) 

(2.22b) 

The key-point of this approach is to remark that according to (2.22), free-particle propagation is 
approximated by an ordered sequence of free-particle propagators of two-site systems. Clearly, 
each of these two-site propagators is easy to calculate analytically. The result is 

e -i7K/ = ll cos 7V- i( c[+c/+r + c[++rc[) sin TV/, (2.23) 
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where d stands for the identity operator. Remark that (2.23) is just an abstract representation of 
a unitary transformation in a two-dimensional vector space spanned by ( BI( t), @/+i( t))T. Thus, 
we may equally well write 

(2.24) 

It is now easy to see how (2.22) operates on a given state 1 a(t)) (or equivalently 
{@r(t), *. . > @L+l(t)}). Letting the right-most factor of (2.22) act on 1 Q(t)) means that we have 
to take all pairs {G~~~+i(t), @T1+2(t)}, I=O,..., L/2 - 1 and apply the two-dimensional trans- 
formation (2.24) (with r replaced by 7/2) to each of these pairs. Next we have to apply (2.24) to 
all pairs { @2[+2(1), @21+3(t)}, I= 0,. . . , L/2 - 1 and finally repeat the procedure (with r 
replaced by r/2) for all pairs { !&,+r( t), c&~+~( t)}, I= 0,. . . , L/2 - 1. 

As the algorithm based on (2.22) does not require transforms to Fourier space but rather 
operates on the wave function in its real-space representation, it is a genuine RS method. 
Obviously, the number of operations required by this algorithm is proportional to L, but this not 
necessarily implies that it is more efficient than the FFT-based method. In the RS method 
free-particle propagation is approximated by a sequence of unitary transformations, each one 
involving two sites. The FFT method allows the exact (numerical) calculation of the effect of the 
free-particle propagator. Therefore for large L some compromise between the speed of calcula- 
tion (which is better for the RS than for the FFT method) and the accuracy (which is worse for 
the RS than for the FFT method) has to be found. For the free-particle case this discussion is of 
academic interest only, since there clearly is no point to use an approximation scheme if an exact 
evaluation can be performed. 

The ideas put forward for the free-particle system, extend easily to the case where there is 
interaction. For the 1D Hamiltonian H = K + U with 

K=& ch+1+ CLld 
I=1 

(2.25a) 

and 

L+l 

U= W C e/n,, 
I=1 

(2.25b) 

a first second-order SPF algorithm is based on the approximation 

e --id = E, ( T, K, u> = e-iTK/2 e-idl e-iTK/2m (2.26) 

Alternatively one could replace eCrH by eCiTU12 eWiTK eeiTu12 but, as explained in chapter 3, in 
practice this does not make much difference. From the preceding discussion it should be clear 
how to compute the effect of E,( r, K, U) on the state 1 Q(t)). Either the FFT or the RS 
algorithm can be used to perform the free-particle propagation (e-i7K/2). Propagation with eeiTLI 



16 H. De Raedt / Solving the time dependent Schriidinger equation 

is almost trivial: each component Ql(t) is to be multiplied with the site-dependent phase factor 
e -i7W’/. A full RS algorithm would correspond to the replacement 

e -irH = e -iTK,/4 e-iTKE/2 e -irKo/4 e-irU e-i~Ko/4 e-irKE/2 e-irKo/4 (2.27) 

In the rest of this paper this scheme will be denoted by RS,. There is however an other 
possibility to set up a genuine RS scheme. Indeed, the Hamiltonian can be written as H = Ho + 

HE where [35] 

L/2-1 

Ho = v c 
I=1 [ 

(4+1c21+2 + 4+2c21+1) + 32if1n2~+1 + ~2112n21+2)] 

+ v( c:c2 + &) + Wqn,, 

and 

L/2-2 

HE = v c 
I=0 [ 

(4+2c21+3 + 4+3c21+2) + 3rZif2n2(t2 + c21+3.2,+31] 

+ JwcL+l+ 4+1cL) + J,f+L+lnL+l. 

(2.28a) 

(2.28b) 

Using this break-up the second-order RS algorithm would read 

e -irH ~ e -irHo/ e-irHE e-irH,,/2 (2.29) 

Since Ho (HE) is a sum of commuting two-site operators, the explicit expressions for e-i*Ho/2 
and ediTH E are easily calculated analytically. This scheme is identical to the one presented in the 
previous section and will be called RS; in the sequel. 

From computational point of view, (2.29) is more efficient than (2.27) since it involves less 
multiplications by 2 x 2 matrices. However, as we will see, extending these concepts to the 
fourth-order methods will force us to decompose the Hamiltonian in kinetic and potential energy 
first, just as we did to derive (2.27). Note however that decomposing the Hamiltonian or kinetic 
energy into two blocks of commuting two-site operators is not the only way to set up a RS 
scheme. In principle any symmetrized product of exponential operators will do as indicated by 
(2.6). The main reason for adopting the “odd-even” approach is that the resulting algorithms are 
easy to vectorize and exhibit a high degree of parallelism. 

Let us now address the question of how these ideas carry over to two- and three-dimensional 
systems. Consider the case of the free-particle system first. The kinetic energy operator T is itself 
a sum of d commuting kinetic energy operator T,, i.e. T = C,T,, where the sum over e goes over 
the d unit vectors, 

T, = v c Kc,+, + C,=,C,)~ (2.30) 
n=A 

and the sum over n runs over all lattice points of the d-dimensional hypercube. Since 
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[T,, Q] = 0 for all e and e’, the second-order RS scheme can be applied to each T, separately. 
More concrete we can write 

(2.31) 

Just as in the 1D case, the subscripts 0 and E refer to the (d - l)-dimensional odd- and 
even-labeled sublattice. Of course in the d-dimensional case the meaning of odd and even should 
not be taken too literally. What is meant is that each T, is written as a sum of two contributions 
T, = T,,, + Te,E such that T,,, ( Te,& is the sum of commuting two-site operators. 

If the interaction U = WC n =*enn,, is present there are at least two ways to proceed. One can 
first break up the hamiltonian into kinetic and potential energy and then follow the prescription 
of the preceeding paragraph to approximate the kinetic energy propagator. Alternatively one can 
write the Hamiltonian as a sum of 2d contributions, each contribution itself being a sum (over 
half of the lattice) of commuting two-site operators. If one is 
accuracy of these schemes the latter is to be preferred because 
view of efficiency. 

2.3. Fourth-order methods 

satisfied with the second-order 
it is superior from the point of 

Having discussed to considerable extent several second-order SPF schemes, we will now 
examine the possibility to construct more powerful, efficient algorithms by exploiting the 
systematics of the SPF approach. Our goal will be to increase the order in 7 to which the SPF is 
correct and investigate whether such approximants are useful in practice. The first step in 
developing fourth-order SPF methods is to approximate eAiTH = e-i7(K+H2) by the unitary 
operator [34] 

,v(~, H,, H,) = e-iTHl/2 e-i7H,/2 eiT3C(H,,Hd e-irH2/2 e-irH,/2, (2.32a) 

where 

C(H,, H2) = [H, + 2H2, [H,, H2]]/24. (2.32b) 

Just as for the second-order method one can prove that 

IleeiTH - Eq(7, H,, H,) 11 G cd75 + O(T~), (2.33) 

where cq is a constant, its explicit form being given in appendix A. In general the complexity of 
the expression resulting from working out the double commutator appearing in (2.32) will be 
such that an additional approximation for ei’3c(Hl,H2) is required. Writing C( H,, H2) = C:,,C, 
and invoking the first-order approximation (2.1) yields 

eiT3C(H,, HZ) = SC1 eiT3Cse (2.34) 
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Note that this does not affect the fourth-order correctness of (2.33) since according to (2.2) errors 
introduced by (2.34) are of order r6, as shown explicitly in appendix A. The resulting 
fourth-order SPF reads 

Ee(r, HI, H,) = e-ir&/2 e-i7H~/2 
i ! 

8a ei&‘, e-irH2/2 e-i71f,/2, (2.35) 

and satisfies 

II e -iTH - &( r, H*, Hz) II< c4r5 + U(G), (2.36) 

so that the bound on the error of the fourth-order method will be of order rs which is clearly 
much better than the 73 proportionality of the second-order algorithms. This of course does not 
i~ediately imply that the former methods are also more efficient than the latter. Indeed, when 
compared to for instance (2.29), the presence of the extra exponentials already indicates that it 
will require more computation to perform a time step using &(r, Hi, H2) than when 
E2(7, Hi, Hz) is invoked. On the other hand, since &( T, Hi, H2) can be expected to be more 
accurate than E2( T, Hi, Hz) integration of the TDSE can he done with larger time steps when 
J&(7, H,, H,) is employed. To summarize, whether or not fourth-order methods should be 
preferred to second-order schemes will depend on accuracy requirements, the length of the time 
interval over which the solution of the TDSE is to be obtained, and as will be discussed in more 
detail in chapter 3, on the amo~t of high-speed memory that can be accessed without making 
explicit or implicit (e.g. page-fault driven) I/O operations. Experience has shown that the 
fourth-order algorithms are much more efficient than their second-order counterparts provided 
sufficient memory is available. 

So far the presentation has been quite general because we have not specified how the 
Hamiltonian should be decomposed nor did we discuss how to actually calculate 
Ea( r, H,, Hz) 1 Q(t)). As before we consider the 1D case first. Chosing Hr = K and H2 = U 
with K and U given by (2.25), it follows directly from (B.4) that 

- qg i: (f, - ~l+1)2wct+l + ChtL 
I=1 

but this does not yet fixes C, in a unique manner since the only requirement is that C = C:=,C,. 

(2.37) 
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In view of the fact that there is no theoretical argument that can be of help to decide how to 
break up (2.37), it makes ‘a lot of sense to optimize the choice of C, with respect to 
computational demands. As we have seen repeatedly by now, it is easy to compute the effect on 
the wave function of products of propagators as long as each propagator involves most two sites. 
This then leads to the choice 

c 2 = g C%41+3 - 2E41+2 + ~4,+1&q:+lc4I+3 + 4l+3c4,+1) 

+ g m41+4 - 2c41+3 + ~41+2klf+2C41+4 + cq+1+4c41+2), 

G = g m41+5 - 2E4,+4 + ~4,+3)(4J+3C41+5 + cq+l+5c41+3) 

+ q m4,+fj - 2e4/+5 + ~4l+4Hcq+1+4C41+6 + c‘ll+6c41+4)~ 

c4 = - g C’ b21+1 - ~21+2)2(c2:+2c2,+2 + cf+2C2l+A 

G = - qg C’ b2/+2 - %1+d2(c/+2C21+3 + &+3c21+2)9 

(2.38a) 

(2.38b) 

(2.38~) 

(2.38d) 

(2.38e) 

where C’ is a shorthand notation for the sum taken such that all subscripts appearing in the 
expression to be summed stay within the interval [l,. . . , L + 11. Remark that each of the C,, 
s=2 , . . . ,5 is itself a sum of commuting, Hermitian operators. Hence, l-l:=, ei7jcs is nothing but 
an ordered product of two-site operators. The precise order in which these two-site operators 
appear is irrelevant. Clearly the calculation of eiT3C(K,U) is entirely performed in real space, 
without invoking Fourier transforms. 

Having dealt with e i73C(K~U) let us now focus on the remaining problem namely constructing a 
fourth-order RS method for computing ePiTK12. We only have to repeat the same steps as above 
but this time for K = K, + K, instead of H = K + U [39]. More explicitly we have 

E4( 7/z, K,, KE) = e-iTKd4 e-i7Kd4 eiT3C(Ko,KE)/8 e-irKE/4 ,-i7Ko/4, (2.39) 

where the expression for C( K,, KE) follows from (B.8). The next step is to approximate 
e iT3c(Ko,KE) by a product of two-site propagators. The result is 

i4( 7/z, K,, KE) = e-irKo/d e-iTKd4 ( fi ,i’K.,,) e-i7KE/4 ,-iTK,/4, (2.40) 
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where in this particular case it is most evident to chose 

v3 L5-2t K,= -12 4+1c21*4 + &&21+1)~ 
I=0 

73 v2-1 

K2 = -$- c Mc21+3 + 3c,+,+349 
I=1 

v3 L/2-l 

I(3 = 12 c (cz+I+2c21+3 + cz+1+3c21+2)~ 
I=0 

3 L/2-1 

Kj = - $- c fGl+lCtl+2 + 4f+zczI+A 

I=0 

and 

(2.41a) 

(2.41b) 

(2.41~) 

(2.41d) 

since this break-up automatically divides the lattice in disjunct sublattices. This then concludes 
the construction of a fourth-order RS method for a 1D system. Algorithms based on this 
approach will be denoted by RS,. 

In two or more dimensions, the procedure is very similar. First split up H in kinetic (T) and 
potential (ZY) energy. Use expressions (B.4) with the appropriate values of the t,,,!‘s to 
approximate e iT3c(T,u) by a product of single-site and two-site propagators. From computational 
standpoint, i.e. vectorizability and parallelism, it is important to group these propagators such 
that all two-site propagators in each group commute with each other and the product of them 
acts on as many lattice sites as possible. To approximate the kinetic energy propagator e-“r we 
first use the fact that T = C,T,, where 7” = VCnEAtn,n+e( c~c~+~ + cz+,c,) and that [T,, Tcr] = 0 
for all e and e’. Consequently this problem reduces to approximating the kinetic energy 
propagator of a particle moving on a chain. In other words we simply have to repeat the 
procedure for K, presented above, for each of the d dimensions of the lattice. 

Although the fourth-order scheme outlined above is the one that has been found to be most 
suitable in actual applications, it is nevertheless of interest to investigate other ways of 
constructing fourth-order SPF algorithms. As already indicated in the previous section there is 
no reason to start by breaking up the ~~ltonian into kinetic and potential energy and then 
decompose the kinetic energy further into odd and even sublattice operators. Instead one can 
write the Hamiltonian itself as the sum of odd and even sublattice operators. For a 1D system 
the fourth-order approximant reads 

E,(~, ~tr,, H,) = e-i~%/2 e-i%d2 eiT’C(Ho,Hd e-i+E/2 e-irHo/2, (2.42) 
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Again, further approximation of eiT3c(Ho,HE) in terms of two-site propagators is required. The 
most obvious choice is 

@&, Ho, H,) = e-~7%‘2 e-ir&/2 
i i 

Se ei?A, e-irHE/2 e-irH0/2, 

where, for the more simple case of periodic-boundary conditions, 

(2.43) 

Al = & “El [(2v3 + vw2c;,+3 - 2vw2~2,+2~2,+3)(c,:,,c,,,, + c2+1+3c21+2) 
I=0 

+2v2w(c2,+2 + 2c21+3)n21+2] 7 

A2 = $ Y1 [t -4v3 - 2vw241+2 + ~~2e2,+lE21+2)(C2+1+1C21+2 + CZ+I+2C21+1) 
I=0 

(2.44a) 

(2.44b) 

A 3 = g ‘%‘&21+3 + 4r21+4 - 2e21+2k;?:+2c21+3 + czfi+3c2,+2) 
I=0 

+ g “5’ (‘21+1 - 2c21+2 - 2c21+3)k2+1+1c2,+3 + cz+I+3c21+1), 
I=0 

(2.44~) 

4 = $ .‘E1 (c2+1+2c21+5 + cz+1+421+2)~ 
I=0 

and 

4 = - g .‘E1 tc2:+1c2,+4 + 41+4c2,+1). 
I=0 

As will be demonstrated in chapter 4, for 1D problems this approximant, to be called RS:, is 

(244d) 

(2.44e) 

more efficient than all others. Unfortunately it has a drawback. Extending the calculation of 
C( Ho, HE) to the case of two- or three-dimensional systems is a horrible task. In other words 
this approach lacks the modularity of the fourth-order scheme based on a T-U decomposition 
and therefore it is also much harder to implement. 

3. Implementation 

The main advantage of explicit algorithms is that they are relatively easy to implement. The 
awkward expressions appearing in chapter 2 suggest that explicit schemes based on symmetrized 
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product-formula’s (SPF’s) do not share this appealing feature. The purpose of this chapter is to 
demonstrate that once taken the formalism for granted, translating the abstract representation of 
a SW of a propagator into computer code is straightforward, even for three-dimensional 
problems. 

It is obvious that it is important to search for methods that need as few arithmetic operations 
per time step as possible, but one should not expect that one can do better than keep the number 
of operations proportional to the number of lattice (or mesh) points Ld. In this respect RS 
methods are optimal since each time step requires 0( Ld) multiplications or additions. Al- 

gorithms based on FFT’s need 0( Ld log Ld) operations but as already explained in chapter 2, 
are more accurate. 

Another point of concern is the size of memory necessary to store the wave function and 
propagators. Also from this viewpoint it is desirable to devise algorithms the memory demands 
of which scale linearly with the number of lattice points. Obviously, storage of the wave function 
requires 0( Ld) bytes. To store the full propagator eeiTH one would need 0( Ld) x U( Ld) bytes 
and this clearly limits the range of application considerably. The sparseness of the propagators 
constructed by means of SPF reduces this amount to O(Ld), the same as for the wave function. 
As the fourth-order SPF approximants involve more exponential operators than a second-order 
scheme, it can be expected that the latter will need less memory than the former. 

As our main design objective has been to minimize the computation time per time step, 
constants representing non-zero matrix elements of the propagators are calculated once and then 
kept available in high-speed memory. In case the size of high-speed memory proves to be 
insufficient, one might contemplate using external storage either by exploiting some of the 
features offered by virtual memory systems or by performing explicit I/O. In most of our own 
applications, it was essential to run the code at the highest speed attainable and consequently the 
idea of using external storage had to be abandonned. 

It is also worthwhile to pay some attention to the order in which numbers are fetched from 
memory. The presence in scalar or vector processors of cache memory or of a virtual memory 
system suggests that it may be more efficient to access memory sequentially, with relatively small 
strides, instead of “almost” randomly. RS algorithms offer the opportunity to do this at no cost. 
Although on some processors the gain obtained by taking into account this property of 
“locality” may be marginal, on others such as the CYBER 205 or the IBM 3090/VF it may 
prove to be substantial. 

In general the wave function of the d-dimensional system is represented by Ld complex 

numbers {+i(t),..., GLd( t)}. These complex numbers can be stored as an array of complex 
variables or as two arrays of real variables. For reasons to be explained below, the latter storage 
method is to be preferred. Then there are still two different ways to store the real (imaginary) 
parts in an array. For a d-dimensional system, one could decide to make use of d-dimensional 
system, one could decide to make use of d-dimensional arrays. It is well-known that this way of 
storing elements is not optimal, certaintly not for vector operations, because the elements do not 
occupy consecutive memory locations (except when the size of the lattice is as large as the 
dimension of the array). Hence it is more appropriate to consider the Ld numbers representing 
the real (or imaginary) part of the wave function as one long one-dimensional array and to take 
care of the explicit address calculation oneself. In our implementation we have adopted the most 
obvious convention, namely the index of the array to a particular site is calculated as i, + (i, - 
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l)L, + (i, - 1)&L, where i,(L,), a = x, y, z is the index (linear size) in (of) the a-direction. 
Section 3.1 is devoted to the implementation on a scalar machine of second- and fourth-order 

RS algorithms. It will be shown that all necessary calculations can be performed by using three 
different procedures, the FORTRAN code of which is given. In section 3.2 the vectorized version 
of the computational kernel, written for the CYBER 205, is discussed. From its simplicity it will 
be clear that it is not difficult to adapt this code for use on other vector machines such as the 
CRAY 1s or IBM 3090/VF. In chapter 4 an evaluation is given of the performance of scalar and 
vectorized codes, by combining the results of a detailed analysis of the accuracy of the different 
schemes with measurements of CPU times necessary to perform the calculations. 

Before presenting details of the algorithms, a general remark is in order. Consider for instance 
the RS, scheme. The time-step operator is then e-7K/2 ee7’ e- 7K’2 In many applications one is . 

not interested in knowing the wave function at each time step but rather after a number, say n, 
time steps. Then by trivial rearrangement (e-‘K/2 eeTLi e-7K/2)n = eWTKj2 e-7U(e--7K eeTU)“-’ 
e --7K’2 showing that it is possible to reduce the amount of computation in this manner. Note, 

however, that since RS, is employed to compute the propagators e-7K/2 and eeTK, it is to be 
expected that the error resulting from the application of (e-‘Ko/4 e-‘KE/2 e-TKo/4 e-T~e-TKo/4 
x e--7KE/2 e-7K,/4 n 

) is smaller that the error coming from the replacement of eeinrH by 
e - 7K,/4 e - rK,/2 

e 
- 7K,/4 e-~lJ(e-~K0,‘2 e-rKE e-~K,/2 e-~U)n-l e-~K,/4 ,-~K,/2~-rK,/4 because 

in the latter, the approximant to eviTK will not be “as good” as the approximant to eeirK12. 
Using this rearrangement of exponentials in the implementation of RS, or R,S; also implies that 
it will not make much difference if the role of K and U is interchanged, as long as the number of 
intermediate steps n is large compared to the number of time values for which the wave function 
is to be known. For the fourth-order RS algorithm there is never a substantial difference if one 
interchanges K and U. 

3. I. Scalar algorithm 

The simplest calculation that has to be performed is definitely the propagation by e-‘7u, with 
U= WCnEAennn. Since U consists of operators that commute, letting eeiTu act on the wave 
function is tantamount to multiplying each element of the wave function J/,(t) by a phase factor 
e -lTw’n. The scalar code that realizes these fairly simple manipulations is shown below. 

subroutine expU(psiR,psiI,XR,XI,l) 
real * 8 psiR( *),psiI( *),XR( *),X1( *) 

do i = 1,l 
r-0 = psiR(i) 
rl = psiI(i) 
c = XR(i) 
s = XI(i) 
psiR(i) = c * r0 + s * rl 
psiI(i) = c * rl - s * r0 
end do 
return 
end 
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It is assumed that the propagator eeiTU is already stored in the arrays XR (real part) and XI 
(minus the imaginary part) using the same storage scheme as the one used for the wave function. 
One reason for keeping real and imaginary part apart is that on the machine on which the 
original code was developed, a VAX 8200, this was forced upon us because the FORTRAN 
compiler (VAX FORTRAN V4.5) did not generate optimal code (i.e. it coded calls to library 
routines) for executing double precision (COMPLEX * 16) multiplications. Furthermore, antic- 
ipating migration of the code to vector machines, the use of complex variables is to be avoided as 
much as possible. 

A piece of code that performs all calculations for the approximate free-particle propagator 
e -iTT,,,/2 e-i7T,,E e-i7T,,o/2 e-i7Tx,o/2 e-i7Tx,E ,-i~T,,,/2 (see (2.31)) for a 2D system is given below. 

c Free-electron propagation in x-direction 
call expK(psiR,psiI,c2,s2,l,lx-1,2,l,l,lx,lJx) 
call expK(psiR,psiI,cl,s1,2,1x-1,2,1,1,1x,1,1x) 
call expK(psiR,psiI,c2,s2,l,lx-1,2,1,1,1x,1,1x) 

c Free-electron propagation in y-direction 
call expK(psiR,psiI,c2,s2,l,lx,l,lx,l,lx-1,2,1x) 
call expK(psiR,psiI,cl,sl,lJx,l,lx,2,1x-1,2,1x) 
call expK(psiR,psiI,c2,s2,l,lx,l,lx,l,lx-1,2,1x) 
. . . 

subroutine expK(psiR,psiI,cosin,sinus 
1 ,ixO,ixl,ix2,ix3,iyO,iyl,iy2,iy3) 

real * 8 psiR( *),psiI( *) 
C 

do j0 = iyO,iyl,iy2 
jl = (j0 - 1) * iy3 
do i0 = ixO,ixl,ix2 
i=iO+jl 
j=i+ix3 
19 = psiR(i) 
rl = psiI(i) 
r2 = psiR(j) 
r3 = psiI(j) 
psiR(i) = r0 * cosin + r3 * sinus 
psiI(i) = rl * cosin - r2 * sinus 
psiR(j) = r2 * cosin + rl * sinus 
psiI(j) = r3 * cosin - r0 * sinus 
end do 
end do 
return 
end 

In the code that calls expK, cl = cos ~IJ’, sl = sin rI’, c2 = cos( TV/~), s2 = sin( TV/~) and lx is 
the linear size x- and y-direction. For simplicity it has been assumed that the lattice is isotropic 
(i.e. interchanging the x- and y-direction is a symmetry operation of the system). The action of 
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Fig. 3.1. Selection of pairs of lattice points resulting from the application of the second-order symmetrized 
product-formula algorithm RS,. 

the four different propagators e-i’T,,0/2, eei7r@, e-i7r+/2 and e-i7q.E is to replace pairs of 
coefficients of the wave function #,,(t) by new pairs. Which pairs are taken is determined by the 
variables ix0 ,..., ix3 and iy0 ,..., iy3 as illustrated by the code that actually implements the 2D 
RS scheme for the free-particle propagator. Instead of determining which elements are selected 
by studying the code, it is easier to understand what happens by looking at a graphical 
representation of the 2D lattice. 

In fig. 3.1 I have drawn a 5 X 5 lattice and indicated which lattice points are grouped in pairs 
for each of the four different propagators. To compute e-i7T,,o/2, the elements of the set { 4,,(t)} 
are grouped into pairs, as indicated by the solid curved lines. The unitary transformation (2.24) is 
then applied to each of these applied to each of these pairs. This completes the calculation of 
e -i7r&‘2 1 #(I)). Th e same steps are to be repeated to perform propagation by eeiTTx.E but 
instead of grouping pairs according to the solid curves, the two elements are to be chosen such as 
to be chosen such as to be interconnected by the dashed curves. The procedure for e-i7~,o/2 or 
e -iTTy.E is similar. Pairs of lattice points are selected as indicated by the dashed-dotted and dotted 
curves respectively. Extending expK to handle also three-dimensional problems is almost trivial. 
One just needs to add another DO-loop and four variables that play a role similar to ix0, ixl, ix2 
and ix3. 

The computational kernels expU and expK (properly generalized) suffice to implement a 
d-dimensional second-order RS algorithm based on the break up in kinetic and potential energy. 
From the discussion of section 2.2 it follows that it is more efficient to decompose H itself rather 
than first break up H into kinetic and potential energy and then invoke the second-order SPF 
again to compute emiTT by a RS algorithm. Generalizing expK to perform these calculations is 
straightforward. Selection of pairs of lattice points remains unaltered but instead of the 2 x 2 

matrix appearing in (2.24), a slightly more complicated 2 x 2 matrix will enter in the transforma- 
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tion formula of each pair. The complex-valued elements of such a matrix will depend on the site 
indices via the potential energy We,. Of course this requires an appropriate modification of the 
code of expK. As a matter of fact the modified code, called expC is exactly the same as the one 
needed to implement the full fourth-order scheme and is presented below. 

subroutine expC(psiR,psiI,XR,XI 
1 ,ixO,ixl,ix2,ix3,iyO,iyl,iy2,iy3) 

real * 8 psiR( *),psiI( *),XR( *),X1( *) 
C 

do j0 = iyO,iyl,iy2 
jl= 0’0 - l)*iy3 
do i0 = ixO,ixl,ix2 
i=iO+jl 
j = i + ix3 
cosin = XR(i) 
sinus = XI(i) 
r0 = psiR(i) 
rl = psiI(i) 
r2 = psiR(j) 
r3 = psiI(j) 
psiR(i) = r0 * cosin + r3 * sinus 
psiI(i) = i-1 * cosin - r2 * sinus 
psiR(j) = r2 * cosin + rl * sinus 
psihj) = r3 * cosin - r0 * sinus 
end do 
end do 
return 
end 

It is seen to be almost identical to expK except that instead of having cosin and sinus as 
transformation coefficients, the values of these coefficients depend on the indices of the two 
lattice sites involved. 

Implementation of the fourth-order RS scheme for the free-particle propagator ePiTT proceeds 
along the same line. Remark however that because of the free boundary conditions, care has to 
be taken of some correction terms, i.e. the third term in (B.8a)and (B.8b) respectively. The code 
that implements the fourth-order RS scheme (2.40) for a 2D free-particle propagator is shown 
below. 

c Fourth-order algorithm for the 2D free-particle propagator 
if (lx.gt.1) then 

c Free-electron propagation in x-direction 
c nearest-neighbor terms: e-i7Ko/4 

call expK(psiR,psiI,cXl,sXl,l,lx - 1,2,1,1,ly,l,lx) 
c nearest-neighbor terms: e-iT(KE/4--72K3/8) 

call expK(psiR,psiI,cX2,sX2,2,lx - 1,2,1,1,ly,l,lx) 
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c nearest-neighbor terms: ei73K4/8 
call expK(psiR,psiI,cX3,sX3,1,lx - 1,2,1,1,ly,l,lx) 

c correction terms: eiT3K5/8 
call expK(psiR,psiI,cX6,sX6,1,2,2,1,1,ly,l,lx) 
call expK(psiR,psiI,cX7,sX7,1x - l,lx,2,l,l,ly,l,lx) 

c next-next-nearest-neighbor terms: eiT3K1/8 
call expK(psiR,psiI,cX4,sX4,lJx - 3,2,3,1,ly,l,lx) 

c next-next-nearest-neighbor terms: ei73K2/8 
call expK(psiR,psiI,cXS,sX5,2,1x - 3,2,3,1,ly,l,lx) 

c nearest-neighbor terms: eeiTKE14 
call expK(psiR,psiI,cXl,sX1,2,1x - 1,2,1,1,ly,l,lx) 

c nearest-neighbor terms: e-i7Ko/4 
call expK(psiR,psiI,cXl,sXl,l,lx - 1,2,1,1,ly,l,lx) 
endif 

C 

if(ly.gt.1) then 
c Free-electron propagation in y-direction 
c nearest-neighbor terms: eCiTKo14 

call expK(psiR,psiI,cYl,sYl,l,lx,l,lx,l,ly - 1,2,1x) 
c nearest-neighbor terms: e-iT(KE/4-72K3/8) 

call expK(psiR,psiI,cY2,sY2,1,lx,l,lx,2,ly - 1,2,1x) 
c nearest-neighbor terms: ei73K4/8 

call expK(psiR,psiI,cY3,sY3,1,lx,l,lx,l,ly - 1,2,1x) 
c correction terms: eiT3K5/8 

call expK(psiR,psiI,cY6,sY6,1,lx,l,lx,l,1,2,lx) 
call expK(psiR,psiI,cY7,sY7,1,lx,l,lx,ly - l,ly,2,1x) 

c next-next-nearest-neighbor terms: ei73Kl/8 
call expK(psiR,psiI,cY4,sY4,l,lx,1,3 * lx,l,ly - 3,2,1x) 

c next-next-nearest-neighbor terms: eir3K2/8 
call expK(psiR,psiI,cY5,sY5,1,1~,1,3 * lx,2,ly - 3,2,1x) 

c nearest-neighbor terms: eeiTKE14 
call expK(psiR,psiI,cY1,sY1,1,lx,l,lx,2,ly - 1,2,1x) 

c nearest-neighbor terms: e-iTKo/4 

call expK(psiR,psiI,cY1,sY1,1,lx,l,lx,l,ly - 1,2,1x) 
endif 

For a change here it has not been assumed that the lattice is isotropic, as is reflected by the 
appearance of the linear size in the y-direction (ly), and the possibly different values of the 
transformation coefficients cY1 etc. The example above demonstrates very clearly the modularity 
of the SPF approach. All operations are done with the same routine. Pairs of lattice sites are 
picked out in different ways and the “cosine” and “sine” of the plane rotation is chosen 
accordingly. The precise values of the transformation cosines cX1,. . . , cY7 and sines sX1,. . . , sY7 
follow directly from (2.41). Remark that this fourth-order algorithm for the free-particle 
propagator does not require a lot of extra high-speed memory. Except for the wave function 



28 H. De Raedt / Solving the time dependent Schriidinger equation 

itself, storage of which requires 0( Ld) floating-point words, one only needs to store the cosines 
and sines and this takes only O(1) floating-point words. Also note that the order in which the K, 
appear in (2.40) is different from the order chosen to implement the algorithm, the reason being 
that in this way one pass over the lattice can be eliminated without losing accuracy. 

Let us now focus on the implementation of the first of the full fourth-order algorithms 
proposed in section 2.3 and consider the 1D case first. From the standpoint of programming, the 
new problem is to perform propagation by IYlf=i eiT3’s with C, given by (2.38). By inspection of 
(2.38) it directly follows that we already know how to compute eiT3’l, since we can simply use the 
routine expU, assuming that the arrays XR and XI contain the appropriate values of the phase 
factors. 

To compute eiT3cr, s = 2,. . . ,5 the routine expC can be used. For instance, for 1D system 
XR( I) = cos[ VW2~3( eI - c 
or eiT3G. 

r+1)2/12] and X1(1) = sin[VW2T3(EI - ~~+~)~/12] in the case of eiT3q 
It is not difficult to imagine that propagation with eiTcZ and eiTc3 can be done in a 

similar manner, the main difference being that the distance between two lattice sites, belonging 
to a pair, is not one but two lattice spacings. 

In the general, d-dimensional case, the situation is not much more complicated. The new 
feature is the presence in C( T, V) of terms involving sums with e > e’ (see appendix B). Taking 
care of such terms is a matter of picking out the correct pairs of lattice sites. Note that storage of 
the matrix elements of all the various propagators eiT3c, requires 2 Ld floating-point variables per 
propagator. 

To summarize, the three scalar routines expU, expK and expC suffice to construct any of the 
RS algorithms proposed in chapter 2. The number of operation required to perform a single time 
step increases linearly with the number of lattice points Ld. The particular choice of the RS 
schemes is such that recursive manipulation of data is avoided. 

3.2. Vectorized algorithm 

The explicit non-recursive character of RS, and RS, suggests that the computational kernels 
are vectorizable to a high degree and this is indeed the case. A functionally equivalent vectorized 
code of expU is given below. 

SUBROUTINE TDSESA(XR,XI) 
C INCLUDE ‘COMMON’ 

PARAMETER (MAXVEC = 65535) 
REAL XR(MSI),XI(MSI) 

C 
I=1 
N = MAXVEC 
J = (NSI - 1)/N 
DO 1 L = 0,J 
IF(L.EQ.J) THEN 
N=NSI-I+1 
ENDIF 
TMPl(I;N) = PSIR(I;N) * XI(I;N) 
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TMP2(I;N) = PSII(I;N) * XI(I;N) 
PSIR(I;N) = PSIR(I;N) * XR(I;N) 
PSII(I;N) = PSII(I;N) * XR(I;N) 
PSIR(I;N) = PSIR(I;N) + TMP2(I;N) 
PSII(I;N) = PSII(I;N) - TMPl(I;N) 

1 I=I+N 
RETURN 
END 

This routine was written for use on CYBER 205 but is so simple that it is easily converted to run 
on any type of vector machine. All it does is multiply element by element two complex-valued 
arrays of length NSI. The number of lattice sites NSI the arrays representing the wave function 
(PSIR,PSII) as well as the temporary arrays (TMPl,TMP2) are passed as common variables. The 
arrays XR and XI are supposed to contain the real and imaginary part of the phase factors (e.g. 
e -i7zn) respectively. The DO-loop can be left out if the number of lattice sites NSI is always less 
than the maximum vector length (i.e. 216 - 1 on the CYBER 205). 

Vectorization of the routine expK needs some extra attention if optimal use of the vector 
facilities is to be made. On the CYBER 205, even the most inner DO-loop of expK is not directly 
vectorizable because of the variable stride ix2. Ideally, we want the machine to execute vector 
instructions on vectors of length equal to the number of lattice points, just as in the previous 
example. From the discussion in section 3.1 it directly follows that this will be possible if all pairs 
of lattice sites are suitably arranged in vectors. This can be accomplished in two different ways, 
either by gather operations or be selecting pairs of lattice sites by means of control vectors. The 
first approach requires a lot of extra memory because all index vectors have to be stored 
somewhere when repeated calculation of these indices is to be avoided. In the second approach 
the control variables take only two values and this can be exploited to reduce memory 
requirements considerably, especially on the CYBER 205 where BIT-type arrays can be used to 
store the control vectors. For this reason the control-vector approach was preferred over the 
gather technique. For the model systems studied in this paper, it is also more efficient. 

The vectorized code that performs the same calculations as expK is shown below. 

SUBROUTINE TDSE5B(COSIN,SINUS,BIT,LBIT,OFFSET) 
C INCLUDE ‘COMMON’ 

PARAMETER (MAXVEC = 65535) 
BIT BIT(MS1) 
INTEGER OFFSET 
I=1 
N = MAXVEC - OFFSET 
J = (LBIT - 1)/N 
D02L=O,J 
IF(L.EQ.J) THEN 
N=LBIT-I+1 
ENDIF 
NO = N + OFFSET 
IO = I + OFFSET 
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TMPl(I;NO) = PSIR(I;NO) * COSIN 
TMP2(I;NO) = PSII(I;NO) * SINUS 
TMP3(I;NO) = PSIR(I;NO) * SINUS 
TMP4(I;NO) = PSII(I;NO) * COSIN 
WHERE(BIT(I;N)) 
PSIR(I;N) = TMPl(I;N) + TMP2(IO;N) 
PSII(I;N) = TMP4(I;N) - TMP3(10;N) 
PSIR(IO;N) = TMPl(IO;N) + TMP2(I;N) 
PSII(IO;N) = TMP4(IO;N) - TMP3(I;N) 
ENDWHERE 

2 I=I+N 
RETURN 
END 

The smallest of the two lattice-site indices runs over all lattice sites and the other element of the 
pair is determined by adding an offset “OFFSET” to this index. Whether the pair of lattice sites 
is actually replaced by a new one is controlled by the value of the corresponding element of the 
control vector BIT. As seen from the code above, only one half of all operations are done under 
control of the BIT-vector. Strictly counting all operations learns that in the first four vector 
instructions, there are redundant multiplications, due to fact that the presence of boundaries was 
not taken into account. The amount of time lost by doing these useless multiplications is more 
than just compensated for by the gain in speed resulting from the possibility to perform vector 
operations on (very) long vectors. For completeness it should be mentioned that the variable 
LBIT determines the length of the vector operation. 

As in the scalar version, the two procedures TDSESA and TDSESB suffice to construct RS, 
and RS, algorithm for the free-particle propagator. To be able to implement the full fourth-order 
scheme an additional piece of code is necessary. As pointed out already, what is needed is a 
routine that does quite similar things as TDSESB except that the value of the variables COSIN 
and SINUS changes with the lattice-site index. The code that performs the necessary calculations 

is given below. 

SUBROUTINE TDSEYZ(XR,XI,BIT,LBIT,OFFSET) 
C INCLUDE ‘COMMON’ 

PARAMETER (MAXVEC = 65535) 
BIT BIT(MS1) 
INTEGER OFFSET 
REAL XR(MSI),XI(MSI) 

C 
I=1 
N = MAXVEC-OFFSET 
J = (LBIT - 1)/N 
DO 3 L = 0,J 
IF(L.EQ.J) THEN 
N=LBIT-I+1 
ENDIF 
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NO = N + OFFSET 
IO = I + OFFSET 
11 = I-OFFSET 
TMPl(I;NO) = Q8VMASK(XR(I;1),XR(I1;1),BIT(I;NO);TMP1(I;NO)) 
TMP2(I;NO) = Q8VMASK(XI(I;1),XI(I1;1),BIT(I;NO);TMP2(I;NO)) 
TMP3(I;NO) = PSIR(I;NO) * TMP2(I;NO) 
TMP4(I;NO) = PSII(I;NO) * TMPl(I;NO) 
TMPl(I;NO) = PSIR(I;NO) * TMPl(I;NO) 
TMP2(I;NO) = PSII(I;NO) * TMP2(I;NO) 
WHERE(BIT(I;N)) 
PSIR(I;N) = TMPl(I;N) + TMP2(IO;N) 
PSII(I;N) = TMP4(I;N) - TMP3(IO;N) 
PSIR(IO;N) = TMPl(IO;N) + TMP2(I;N) 
PSII(IO;N) = TMP4(IO;N) - TMP3(I;N) 
ENDWHERE 

3 I=I+N 
RETURN 
END 

The similarity with TDSESB is clear. The “cosines” for each pair are obtained from XR by 
merging, under control of the vector BIT, XR with XR, properly shifted by the offset OFFSET. 
The “sines” are determined from XI in exactly the same manner. These two vector operations 
could be eliminated at the cost of twice as much memory. The remaining eight vector operations 
are the same as those in TDSESB. 

The three routines TDSESA, TDSESB and TDSESC constitute the computational kernel of 
the vectorized fourth-order RS algorithm. Except for the implementation of the correction terms, 
reflecting boundary effects (the last term of (B.8a) and (B.8b)), the fourth-order scheme is 
realized by successive calls to these three routines. As the number of correction terms is 0( Ldpl) 
(with a small prefactor!) there is reason to claim that the fourth-order RS algorithm is 
vectorizable to a very high degree. Note that it is not difficult to distribute almost all operations 
over a large number of parallel processors. As we did not have the opportunity to investigate the 
practical consequences of this inherent parallelism of SPF based algorithms, we will not discuss 
this aspect any further. 

4. Performance analysis 

To evaluate the performance of a particular scalar or vector code two different aspects have to 
be taken into consideration: 1) The computational resources (CPU time, memory, etc.) it takes to 
integrate the TDSE (Time-Dependent Schrodinger Equation) over a specified time interval 
[0, t = m7], and 2) the loss of accuracy, due to the approximate nature of the integration scheme 
used. 

For a fixed number of time steps (m) and time (t), it is clear that a more accurate integration 
method will require more computational resources than a less accurate scheme of the same type. 
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However the gain in accuracy, resulting from the use of a higher-order scheme can be exploited 
such as to reduce the amount of computation by taking a larger time step or, in other words, by 
doing less steps. In this reasoning it has been assumed that the maximum error on the properties 
of interest (amplitudes, energy, etc.) that can be tolerated is fixed. To decide which scheme is the 
most efficient demands a careful study of the global errors of and the resource used by the 
different algorithms. This chapter addresses questions related to the efficiency of SPF (symme- 
trized product-formula) based algorithms for solving the TDSE. 

In section 4.1 the simplest case, that of the free-particle propagator, is studied in detail. As is 
well-known (see for example the discussion in section 2.2), a numerically exact calculation of the 
free-particle propagator can be carried out by means of Fourier transforms. For systems with 
free-boundary conditions, the most common situation, only the sine transform of the wave 
function has to be calculated (see section 2.2). In order to compute such transforms efficiently, 
i.e. with much less than 0( Ld X Ld) arithmetic operations, the problem has to be formulated 
such that the FFT algorithm can be applied. In practice most but not all FFT algorithms 
demand the number of data points to be a power of two. For the case at hand, this means that 
L = 2(2k - 1) for some k > 0. Clearly this requirement puts some severe constraints on the size 
and shape of the lattices. In addition computation of the sine transform requires an extra 0( Ld) 

operations to rearrange the data before and after the application of the FFT. 
To make a comparison of RS- and FFT-type algorithms more transparant it has been decided 

to study also systems with periodic-boundary conditions. Although in chapters 2 and 3 emphasis 
has been on systems with free-boundary conditions, setting up similar algorithms for systems 
with periodic boundaries requires only minor changes. As far as the theoretical concepts are 
concerned no new problem enter. See for example the fourth-order scheme introduced at the end 
of chapter 2 (eqs. (2.42)-(2.44)). Programming these algorithms is only a matter of making tiny 
changes to the codes presented in chapter 3. One has to build in that the indices of a lattice point 
are taken modulo L, a trivial change indeed. Although the use of periodic-boundary conditions 
has no impact on the efficiency of RS schemes, FFT-based methods perform much better than in 
the case of free-boundary conditions. 

The advantage of working with periodic-boundary conditions is that the wave function can 
directly be fed into the FFT routine without rearranging the data. The FFT routine used in this 
work is CFFT of the CERN library GENLIB. It has the appealing feature that it does not need 
extra memory to store the transformation “sines” and “cosines”. 

As within numerical accuracy, the error on the free-particle propagator calculated via FFT’s is 
zero, it does not make much sense to compare the efficiency of this approach with other schemes. 
This comparison is therefore postponed to section 2 where the full problem, i.e. the case where 
the potential is non-zero, is addressed. There it is demonstrated that for most practical situations 
of interest, the fourth-order RS method is the most efficient method. 

4. I. Free-particle propagator 

To begin with, let us focus on the error analysis of second- and fourth-order schemes (RS, 
and RS,) for the free-particle propagator. This is the most simple case to analyze since there is 
only one parameter governing the accuracy, namely TV. In table 4.1, some typical results for the 
RMS error on the wave function, i.e. the distance in Ld-dimensional space between approximate 
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Table 4.1 
RMS-errors on the wave function of a 2D free-particle system of size 33X33 for several values of the time t, 
calculated by means of the second-order RS algorithm RS,. CPU time is expressed in seconds 

tv TV = 0.025 TV = 0.05 7v = 0.1 TV = 0.2 

0 0 0 0 0 

1 0.146~10-~ 0.583~10-~ 0.233 x10-* 0.937 x 10-2 

2 0.206 x 10 - 3 0.823~10-~ 0.329 x lo-* 0.132~10-~ 

3 0.258~10-~ 0.103x10-* 0.414x 10-2 0.166 x 10-l 

4 o.345x1o-3 0.138~10-~ 0.552 x 1O-2 0.221 x10-l 

5 0.424 x 10 - 3 0.170x10-* 0.680x 1o-2 0.273x10-’ 

6 o.5o5x1o-3 0.202x10-* 0.808 x lo-* 0.324x10-’ 

7 0.581~10-~ 0.232~10-~ 0.930x10-* 0.373 x10-1 

8 0.662~10-~ 0.265 x lo-* 0.106~10-~ 0.425 x10-l 

9 0.745x10-3 0.298x10-* 0.119 x10-l 0.479 x 10-l 

10 0.823~10-~ 0.329x10-* 0.132x10-’ 0.528 x10-l 

CPU time 114 57.7 29.6 15.4 

and exact wave function, have been collected. These data have been calculated by means of the 
second-order RS method, as explained in section 2.2, for a square lattice of linear size 
Lx = Ly = 33 and for different values of I-V with time covering the interval 0 G t < 10. For 
rV= 0.025 the maximum number of time steps used is m = 400. The initial wave function 
1 @(t = 0)) = C,@,,c,’ IO) was chosen to be 

@, = q 
2 

, = 
. Tk 1 . ak,l, 

sin xx sin - 
“y J(L,+2)(Ly+2) LX+2 LY+2’ 

(4.1) 

with (k,, k,,) = (12, 3). Recall that (4.1) is an eigenstate of the 2D free-particle propagator (see 
for instance eq. (2.15)). This property facilitates the calculation of the exact time evolution of 

I @i(O). 
From the data presented in table 4.1 it follows directly that the data for the RMS errors fit 

excellent to the formula 

RMS(RS,) = r-2(+)2(W), (4.2) 

where for this particular set of data r, = 0.132. In general, the precise value of r, will depend on 
the initial state and system size. Calculations have shown that if the initial state is an eigenstate 
of H, the RMS error tends to be smaller than when the initial state is for instance of the form 

@” = %& where n, is an arbitrary lattice site. The dependence of the RMS error on the system 
size turns out to be weak and not systematic. 

The formal similarity of the right-hand side of (4.2) with the upperbound for the RMS error 
derived in appendix A (see (A.20b)) is striking. The upperbound predicts correctly the most 
prominent dependencies, those on r and t. To be sure that the scaling law (4.2) does not hold 
accidentally it has been verified over and over again, with different sets of parameters. It has 
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been found that (4.2) provides reliable estimates for the global (and therefore also local) error 
without doing extensive computations. Note that the system size is not entering the expressions 
for the upperbounds, supporting the observation that the RMS errors do not increase with the 
system size. 

From the upperbound on the RMS error of RS, (see(A.25)), we may now speculate that a 
similar scaling behavior will hold in this case too. That this is indeed the case is demonstrated in 
table 4.2 where we have repeated exactly the same calculations as those presented in table 4.1 but 
this time with RS,. From these data it follows that 

RMS( RS,) = r4( #)“( W), (4.3) 

with r, = 0.082. Just as in the previous example, the value of r, will depend on the initial state 
and system size. The scaling behavior itself is however universal, as long as the RMS error does 
not approach its asymptotic value 2 (see appendix A for more details on this). Also in this case 
(4.3) has been found to possess predictive power. 

On the bottom line of tables 4.1, 2 the approximate CPU time, as measured on a VAX 8200, is 
given. It is seen that for the same number of time steps the CPU time used by RS, is less than a 
factor of three larger than for RS,. To compare the efficiency of RS, and RS,, assume that we 
want to solve the TDSE for a given interval [0, t] and with a global RMS error on the wave 
function less than some fixed value E. Calling the number of time steps needed by the RS, and 
RS, method to cover the interval [0, t] m2 and m4 respectively, it follows from (4.2) and (4.3) 
that 

m2/m4 = ri’2r;1’4( tV/c) l/4 . (4.4) 
As the total number of arithmetic operations, denoted by n, and n4, increases linearly with the 
number of time steps (with constants of proportionality a2 and a4 respectively) we obtain 

n2/n4 = a2a,1ry2v,1’4(tv/e) l/4 . (4.5) 

Table 4.2 
Same as in table 4.1 but instead of the RS, the fourth-order RS algorithm RS, was used to solve the TDSE 

tv 7 v = 0.025 TV = 0.05 rv= 0.1 TV = 0.2 

0 0 0 0 0 
1 0.346 x lo-’ 
2 0.662 x lo-’ 
3 0.984x10-’ 
4 0.131 x 10-6 
5 0.162 x lO+ 
6 0.194x 1o-6 
7 0.226 x 1O-6 
8 0.257 x 1O-6 
9 0.289 x 1O-6 

10 0.321 x 1O-6 

0.553 x 10W6 0.885 x 1O-5 0.141 x10-a 
0.106 x lo- 5 0.169 x 1O-4 0.269~10-~ 
0.157x10-5 0.251 x 1O-4 o.399x1o-3 
0.209 x 10 -’ 0.334x 1o-4 0.530x10-3 
0.259~10-~ 0.414 x 10 -4 O.657x1O-3 
0.310x10-5 0.495 x 1o-4 0.787~10-~ 
0.361 x 1O-5 0.576 x 1O-4 o.915x1o-3 
0.412 x lo-’ 0.657 x 1O-4 o.1o4x1o-2 
0.463 x lo-’ 0.739 x 1o-4 0.117 x 1o-2 
o.513x1o-5 0.820 x 1o-4 0.130 x 1o-2 

CPU time 271 139 70.7 35.5 
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Comparison of the scalar code for the second- and fourth-order algorithm for the free particle 
propagator (see section 3.1) learns that a4 = 2a, if we neglect small corrections due to boundary 
effects. To get some feeling for the order of magnitude of the constants entering in (4.5) the 
values of r, and r, may be taken from the data of tables 4.1, 2 and this then results in 

n2/n4 = o.34(W/#4. (4.6) 

As the CPU time of a particular RS scheme is proportional to the number of arithmetic 
operations, (4.6) demonstrates that for reasonable values of tV/e (i.e. TV/c B 100) RS, is more 
efficient than RS,. In general, the prefactor 0.34 appearing in (4.6) will depend on the initial 
state and on the computer on which the code is executed. Nevertheless the main conclusion will 
remain the same. For the case presented in tables 4.1, 2, RS, is roughly five times more efficient 
than RS,, which is not very much. However, if we would have wanted the solution of the TDSE 
for much longer times, say t = 10000, with the same RMS error e employing RS, instead of RS, 
would save us a factor of 50 in CPU time. 

A complete evaluation of the efficiency should also include the effect of the cost of memory 
usage. Unfortunately this cost depends very strongly on the particular computer system used and 
this makes it difficult to include this aspect in the discussion. To simplify the reasoning presented 
above it has therefore been assumed that sufficient high-speed memory is accessible at no cost. 

To compare the RS approach with the conventional Cranck-Nicholson (CN) algorithm the 
calculations that led to the results of tables 4.1, 2 have to be repeated using (1 - iTH/2)(1 + 
iTH/2)-’ as the approximate time-step operator. For the special case treated in this section, this 
calculation can be done analytically. Indeed, the initial state was chosen to be an eigenstate of H, 

ak, 
+cosL,+2 ’ 

1 
(4.7) 

with energy 

Ek = 2V co,& 
X 

with k = (12, 3) in the sample discussed above. It then follows that the RMS error on the wave 
function after m time steps is given by 

RMS( CN) = 1 ei(7m&-%‘k) _ 1 1, 
(4.8) 

where & = arctan( 7EJ2). For the same model parameters as the ones used in tables 4.1, 2, (4.8) 
produces the data presented in table 4.3. As before, the upperbound for the RMS error of CN 
(see (A.9)) predicts the correct 7 and t dependence. The data of table 4.3 fits well to the scaling 
law 

RMS(CN) = rCN(#)2(tV), (4.9) 

where for this particular set of data rCN = 1.85. Assuming that in actual applications the number 
of operations of the CN algorithm is the same as for RS, (an assumption that strongly favors the 
CN method), it is seen that in this 2D case, RS, is approximately 14 times more efficient than 
the CN method. 
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Table 4.3 

Same as in tables 4.1, 2 but instead of using a SPF algorithm, the Cranck-Nicholson method has been used to 
compute the RMS errors on the wave function 

tv TV = 0.025 TV = 0.05 TV = 0.1 TV= 0.2 

0 0 0 0 0 
1 0.116 x 1O-2 0.463~10-~ 0.184x 10-l 0.710x10-’ 

2 0.232 x 1O-2 0.927 x 1O-2 0.367 x 10-l 0.142 

3 0.348~10-~ 0.139 x 10-r 0.551 x10-l 0.213 

4 0.464 x lo-’ 0.185 x10-r 0.735 x 10-l 0.283 

5 0.581 x 1O-2 0.232x 10-l 0.918 x 10-l 0.353 

6 0.697 x 1O-2 0.278 x 10-r 0.110 0.423 

7 0.813 x 1O-2 0.324x 10-l 0.129 0.492 

8 0.929 x 1O-2 0.371 x10-1 0.147 0.561 

9 0.104x 10-r 0.417 x10-r 0.165 0.628 

10 0.116x10-’ 0.463 x 10-r 0.183 0.695 

The main conclusion from this comparison is that if one is satisfied with the r2 correctness of 
the CN or RS, scheme, there is no reason to prefer the CN $gorithm over RS,, the latter being 
an explicit, unconditionally stable, more accurate and more efficient algorithm for performing 
the free-particle propagation. As pointed out above, RS, is even more preferable if tv/c B 100. 

Finally some remarks about the numerical precision are in order. The calculations that led to 
the results of tables 4.1-3 have been done with 64-bit floating-point arithmetic (D-floating 
format) on a VAX 8200. In this format the degree of precision in representing a floating-point 
number is typically 16 digits which is more than sufficient for the present purpose. The 
computation time can be reduced further by switching to 32-bit floating-point arithmetic but 
then it becomes impossible to compute the numbers of the second and third column of table 4.2 
as can be expected on the basis of the smallness (relative to 1) of these numbers. In many 
practical cases however it is sufficient to get results with much less accuracy than the one 
required for the calculation of the RMS errors presented in table 4.2 so that an additional 
speed-up can be realized by using 32-bit floating-point arithmetic where appropriate. On a VAX 
8200 the maximum speed-up that can be achieved by this trick is about a factor of two. 

4.2. General case 

Performing an error analysis of the various SPF algorithms in the case where also the potential 
is present (U # 0) is somewhat more tedious than in the free-particle case. The exact results to 
compare with have to be computed by diagonalization of the Hamiltonian. This already puts 
severe restrictions on the size of the systems that can be studied. Fortunately, from the 
expressions for the upperbounds on the RMS errors, it is to be expected that the size of the 
system will not have a dramatic effect on the errors and all our calculations indicate very 
strongly that this is indeed the case. In this section the RMS error on the wave function is 
computed from the data obtained from SPF approximants and from the results obtained by 
direct diagonalization of the exact propagator. All calculations related to the exact evaluation of 
the propagator eeiHt have been performed by EISPACK routines, using 32-bit arithmetic on a 
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VAX 8200 (approximately 5 digits accuracy) and 64-bit arithmetic on a CYBER 205 (approxi- 
mately 14 digits). All other calculations have been done using 64-bit arithmetic. An important 
finding is that the scaling behavior with respect to 7 and t discussed in the previous section 
remains the same. This releaves us from the necessity to present data taken at different values of 
the time t. 

It is obviously impossible to consider all types of potentials. Hence it is necessary to select a 
particular form for the potential. This section contains the analysis for the case where the 
potential WeL is a random variable, distributed uniformly over the interval [ - W/2,W/2]. The 
time scale will be fixed by putting V= 1. With this choice of potential the model is precisely the 
model introduced by Anderson to describe localization of electrons (see also chapter 5) [42]. For 
the present purpose this model is as good or as bad as any other. It only serves to illustrate the 
typical behavior of the RMS errors of the various integration schemes as a function of the 
potential strength IV. Remember that since this system is a genuine lattice model, questions 
related to taking the continuum limit are completely irrelevant. 

To compare with the CN method the knowledge of the eigenstates and eigenvalues of H is 
used to compute the action of (1 - iTH/2)(1 + irH/2)-l directly. This makes it impossible to 
compare on a quantitative basis the efficiency of CN with any of the other methods. For 1D 
problems it is relatively straightforward to estimate the amount of arithmetic operations per time 
step for each of the algorithms discussed in this paper and this will give us a good indication of 
the amount of CPU time necessary to perform a time step. For 2- and 3-dimensional systems the 
situation is much more complicated to analyse since the performance of the CN method will 
depend strongly on the implementation. Fortunately there is some consensus about the efficiency 
of implicit schemes such as CN when applied to multi-dimensional problems, namely that they 
are very costly. Therefore we take the point of view that if the actual RMS error of CN is larger 
than that of another scheme, the latter will also be (much) more efficient. 

Having discussed some general aspects of the performance analysis to be made, let us now 
consider results for the 1D case. In table 4.4 some typical results for the RMS errors have been 
collected. As explained above, a fair comparison of RS schemes and FFT-based algorithms 
demands that periodic-boundary conditions are adopted, and this is what has been done. In 
principle, for W = 0 the RMS errors of FFT, and FFT, should be zero. The non-zero value 

Table 4.4 
RMS errors on the wave function obtained by solving the TDSE by the Cranck-Nicholson method and four different 
SPF algorithms for the case of a 1D Anderson localization model of length L = 64, subject to periodic-boundary 
conditions. The time step used was r = 0.W and the number of time steps was taken to be 100. CN: Cranck-Nichol- 
son method. FFT,: Second-order formula (eq. (2.26)), free-particle propagation by Fast Fourier Transforms. RS,‘: 
Real-space second-order formula (eq. (2.9) or eq. (2.28)). FFT,: Fourth-order formula (eqs. (2.3%38)), free-particle 
propagation by Fast Fourier Transforms, RS,: Real-space fourth-order formula (eqs. (2.42-44)) 

Method 

CN 
FFT, 
RS; 
FFT, 
RS,’ 

w=o W= 6V w=12v W= 24V 

0.37x10-l 0.82x 10-l 0.21 - 

0.12 x 10-4 0.18x10-’ 0.27x10-’ 0.34x10-r 
0.84x10-* 0.14x 10-r 0.16x10-’ 0.20x10-’ 
0.12 x 10-4 0.62~10-~ 0.27x10-’ 0.11x10-’ 
0.71 x 10-4 0.27~10-~ 0.72~10-~ 0.23~10-~ 
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Table 4.5 
CPU times in seconds required by the different SPF algorithms to solve the TDSE for a ring of L = 1024 sites and 100 
time steps as measured on a VAX 8200. The notation used is the same as in table 4.4 

Method 

CPU time 

FFT, RS; FFT, RS; 

87 24 112 58 

0.12 X lop4 merely reflects the five-digit precision used in this calculation. The dash in table 
entry (CN, W = 24V) indicates that for a time step r = 0.1 and 100 time steps the RMS error of 
CN has already reached its maximum and has started to oscillate as a function of the number of 
steps. If this happens the outcome of this CN calculation should be considered as incorrect. The 
primes on the RS symbols indicate that those RS algorithms have been used that, for 1D 
problems, are the most efficient (see the equations referred to in the table caption). 

From the results of table 4.4 the following conclusions can be drawn. Compared to the SPF 
algorithms, CN performs rather bad. For W# 0 the RS algorithms compare favorably to the 
corresponding FFT algorithms, as far as the RMS errors are concerned. Except for IV= 0, the 
fourth-order 1D RS method, based on eqs. (2.42-44), yields the best results. 

To determine which of the four SPF based methods is the most efficient let us first estimate 
the number of arithmetic operations per time step. From the expressions referred to in the 
caption of table 4.4 one readily finds the approximate number of operations to be proportional 
to 2L(a + b log L) for FFT,, 2L(2a + c + 2b log L) for FFT,, 3a’L for RS;, and 8u’L for 
RS,’ where u, b, c and a’ are constants of order unity. Therefore it can be expected that RS, 
(RS,) will become faster than FFT, ( FFT4) if L is made large enough. In table 4.5 some typical 
results for the CPU time used by the four different methods are given. It is seen that for a ring of 
length L = 1024 the L log L dependence of the FFT dominates over the linear dependency. 
Note that RS,’ even takes less time than FFT,. Clearly the conclusion must be that for any 
reasonable interval [0, t], RS,’ is the most efficient algorithm. 

As explained in chapter 2, for two- or three-dimensional problems the fourth-order RS 
approach used for 1D systems is not very well suited because it lacks modularity with respect to 
the dimensionality of the lattice. A more systematic approach is to decompose the Hamiltonian 
into kinetic and potential energy first and then decompose the kinetic energy further into blocks 

Table 4.6 
RMS errors on the wave function obtained by solving the 2D TDSE by the Cranck-Nicholson method and two RS 
algorithms for a square lattice of L2 = 64 sites, subject to periodic-boundary conditions. The time step used was 
r = 0.W and the number of time steps was taken to be 100. The notation is the same as in table 4.4 

Method w=2v w=4v W= 6V W=8V 

CN 0.17 0.19 0.22 0.24 
FFTx 0.50x lo-* 0.18x10-’ 0.29x10-’ 0.41x10-’ 
RS; 0.14x10-’ 0.25 x10-l 0.35 x10-l 0.45x10-l 
FFTd 0.12x10-3 0.45 x 1o-3 0.10x10-* o.19x1o-2 
RS,’ o.19x1o-3 o.5ox1o-3 0.11 x 1o-2 o.19x1o-2 
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Table 4.7 
CPU time in seconds required by the different SPF algorithms to solve the TDSE for 100 time steps for a 2D system 
with periodic-boundary conditions as measured on a CYBER 205 running the SCALAR code. The notation is the 
same as in table 4.4 

LXL RS; RS; FFT, FFT, 

32x32 0.9 3.6 5.4 7.2 
64x64 3.5 14.6 25.8 33.0 

128 x 128 16.4 61.9 131.8 160.6 

of commuting two-site propagators. Real-space methods based on this philosophy are denoted 
by RS, or RS,, i.e. without prime. 

A typical collection of RMS errors for the 2D Anderson model is given in table 4.6. The gross 
features are the same as for the 1D case with one exception: For large W/V the RMS errors of 
RS, (RS,) approach those of FFT, (FFT,). Of course for the RS scheme used here this has to be 
so because if W/V becomes large, the RMS error will be determined by the error made by 
breaking up H into kinetic (T) and potential (U) energy. 

Obviously, decomposition of the kinetic energy implies that RS, will take more CPU time 
than RS,’ simply because more passes over the lattice are necessary. An idea of the CPU time 
required for solving a 2D problem by each of the four different algorithms can be obtained by 
looking at the data presented in table 4.7. As might be expected on the basis of the experience 
with the 1D case, the conclusion remains the same. Any of the real-space algorithms runs faster 
than an algorithm using the FFT. 

Table 4.8 contains a typical selection of RMS errors for lD, 2D, and 3D systems with 
free-boundary conditions, computed by means of the same RS scheme and the same program. 
The notation used here is the same as before. Remark that CN is doing rather poorly compared 

Table 4.8 
RMS errors on the wave function obtained by solving the TDSE by the Cranck-Nicholson method and two different 
RS algorithms for the case of the one-, two- and three-dimensional Anderson localization model, subject to 
free-boundary conditions. The time step used was r = 0.W and the number of time steps was taken to be 100. The 
linear size of the system L =125, L =ll and L = 5 for the lD, 2D and 3D model respectively. RS,: Real-space 
second-order formula (eq. (2.26) and eq. (2.27)). RS,: Real-space fourth-order formula (eq. (2.35) and eqs. (2.40-44)) 

Lattice 

1D 

2D 

3D 

Method 

CN 

RS2 

RS4 

CN 

RS2 

RS4 

CN 

RS2 

RS4 

w=o W= 6V w=12v W=24V 

0.19x10-’ 0.90x10-’ 0.23 - 

0.85 x 1O-2 0.22x10-l 0.46x10-’ 0.10 
o.49x1o-4 0.67~10-~ 0.41 x 1o-2 0.19x10-’ 

0.69x10-’ 0.25 - _ 

0.98 x 1O-2 0.38x10-’ 0.78x10-’ 0.20 
0.60 x 1O-4 o.14x1o-2 0.85~10-~ 0.38x10V1 

0.14 - - _ 

o.8ox1o-2 0.37 x10-r 0.68x10-’ 0.93 x 10-l 
0.51 x 1o-4 o.14x1o-2 0.62 x 1O-2 0.23 x10-l 
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Table 4.9 
Typical CPU-time in seconds used by RS, to solve the 2D TDSE for 100 time steps, as measured on a single-pipeline 
CYBER 205 

N=L2=31x31 N=L2=63x63 N= L2=127x127 

SCALAR 3.9 16.3 66.5 
VECTOR 0.6 2.2 8.5 

to RS. The reader might convince himself that these data show the same trends as previously 
discussed. 

All the results presented in this chapter have been obtained by programs running in scalar 
mode. We now address the question to what extent the efficiency of the algorithms can be 
increased by using vector processors. First note that the knowledge gained above can be put at 
good use to limit the amount of work necessary to perform this comparison. Indeed, it will not 
be worthwhile to test codes that use a (vectorized) FFT provided RS can be vectorized to a high 
degree. From chapter 3 we already know that this is the case so it is justified to leave out of the 
discussion FFT-based algorithms. 

From the structure of the vectorized RS code, it is clear that in order to study the gain in 
performance due to vectorization, it is entirely irrelevant whether the TDSE is solved for a lD, 
2D or 3D system since all vector operators have a length approximately equal to the number of 
lattice points. Table 4.9 gives some idea of the speed-up due to vectorization as measured on a 
CYBER 205. As far as the program is concerned, the scalar and vectorized version differ in the 
computational kernel as already discussed in chapter 3, and in the code necessary to set up the 
BIT vectors. The latter has no effect on the computation time whatsoever. The conclusion is that 
the speed-up due to the vectorization is about a factor of 8. 

Table 4.10 gives the amount of high-speed memory used by the scalar and vectorized version 
of the same program as a function of the number of lattice points, i.e. the number of words 
needed to store the different elements of all two-site propagators appearing in the full RS, 

scheme. The reduction in going from scalar to vector code stems from the replacement of 
INTEGER type control vectors used in the scalar version, by BIT type control vectors used by 
the vector code. For the scalar code the same reduction could have been achieved by packing the 
INTEGER control variables into words. In our applications (see chapter 5) it has been observed 
that storing all numbers, representing two-site propagators originating from ei’3C(T*U), in half 

Table 4.10 
Number of CYBER 205 words used by RS, as a function of the total number of lattice sites N. Included is all scratch 
storage required by the vector operations. The prime indicates that part of the look-up tables are of the HALF 
PRECISION type (see text) 

1D 2D 3D 

SCALAR 17N 35N 61N 

VECTOR (13+&)N (21+ a) N (33 + g)N 

VECTOR’ (11 + &)N (15 + ;)N (21+ g)N 
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precision (32-bit) floating point format does not affect the results. Hence further reduction of 
memory requirements was possible, as indicated by the bottom line of table 4.10. 

5. Applications 

This chapter describes several applications in which SPF algorithms are used to solve 
parabolic difference equations. Instead of presenting results for simple model system such as the 
harmonic oscillator, the TDSE of which is readily solved by any of the standard algorithms, only 
some of our applications will be discussed for which the use of SPF algorithms has been 
instrumental. Common to all of them is that they involve the study of the time evolution of a 
wave packet. In general the procedure goes as follows. First the initial wave packet is constructed 
according to certain specifications, depending on the particular case at hand. Then the fourth- 
order SPF algorithm RS, is invoked to solve the TDSE. During the integration process the wave 
packet is analysed and the physical properties are extracted at regular time intervals. 

The first two applications deal with the problem of localization of waves. The concept of 
localization, originally introduced by Anderson [42] in this study of the motion of an electron 
moving in a random potential, has recently found to be applicable to a wide range of physical 
phenomena including particles moving in almost periodic potentials [43-481, phonons [49-531, 
enhanced back scattering of light by random media [54-561, etc.. The physical process responsi- 
ble for the occurrence of localization effects is interference of waves, a process which is not 
inherently quantum mechanical but as illustrated by recent light scattering experiments [54-561, 
is present in classical wave mechanics as well [57-591. If the medium through which the wave 
travels consists of “strongly” scattering objects that are not “too” far apart, interference may 
prevent the wave packet to spread out indefinitely, even for infinite times. By definition a wave is 
said to be localized if its amplitude decays exponentially with distance. 

From the definition of localization it is apparent that it may be difficult to study this kind of 
phenomenon by directly solving the wave equation, for what is required is information about the 
behavior of the wave packet at “large” distances and “long” times. The most direct manner to 
extract from the wave packet the relevant information is to assume a parametrized form for the 
wave packet and compute the parameters. Usually these parameters can be related to moments 
of the amplitude of the wave. Examination of the behavior of these parameters as a function of 
time will reveal whether the asymptotic form is appropriate or not. A list of the most commonly 
encountered asymptotic forms in given in table 5.1. 

In section 1 the concepts of localized and extended states are illustrated by soiving the TDSE 
for the Aubry model, a single-orbital tight-binding model of an electron in an incommensurate 
potential [60]. An interesting feature of this model is that even in one dimension (1D) it exhibits 
a metal-insulator (extended versus localized) transition, quite unlike 1D random systems where 
almost all states are localized. The vast amount of knowledge about the Aubry model make it an 
excellent, non-trivial example for investigating localization phenomena by direct computer 
simulation [61]. As far as I know no such simulations have already been reported. It should be 
mentioned however that for 1D systems there are more efficient methods of analysis [62-651 
than the one based on numerically solving the TDSE by direct integration. The main purpose of 
section 1 is to illustrate the TDSE approach by applying it to a model system with peculiar 
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properties and to demonstrate how these properties reveal themselves in the time-dependent 
wave function. 

In section 5.2, exactly the same computer code and method of analysis as those used in section 
1 are used to study the two-dimensional (2D) Anderson model of localization. The aim is to find 
out, by direct numerical simulation, whether or not there is a critical value of the strength of the 
random potential below which there exist extended states. Most numerical simulations suggest 
that there is indeed such a critical value, in contradiction with current theories. It therefore 
remains to be settled why most numerical experiments, indicate that there is an abrupt transition 
from a localized to an extended regime as the degree of disorder diminishes. It will be 
demonstrated that by solving the TDSE for sufficiently large systems and long times and answer 
to this question can be given. 

Whereas the systems treated in sections 5.1 and 5.2 are defined by lattice models, section 5.3 is 
devoted to the application of SPF algorithms to continuum problems. In particular it is shown 
how RS, can be extended to deal with higher-order approximations to the Laplacian. The 
generalized SPF algorithm is then. used to compute High-Resolution Electron-Microscopy 
(HREM) images and comparison is made with other numerical techniques. 

5.1. Almost-periodic potential 

The Aubry model is described by the Hamiltonian 

where V is the hopping energy, W is the potential strength, Q is the wave vector of the almost 
periodic potential (almost periodic with respect to the underlying lattice), and the lattice constant 
is taken to be one. Remark that the Aubry model is a genuine lattice model so that we do not 
have to worry about taking the continuum limit. Setting C, = cos(Ql) it is clear that (5.1) is 
precisely of the form used in the construction of SPF algorithms. Hence RS, as discussed in 
chapter 3 can be used without further modification. 

To set up the initial state, two different procedures have been adopted. In the first one, a 
sub-system of typically 125 sites centered around the middle of the chain is solved by numerical 
diagonalization. Then the initial state $( t = 0) is chosen from the 125 eigenstates in such a way 

Table 5.1 
Asymptotic behavior of the second moment of 1 #(r, t) 1 2, the probability of finding the particle at point r at time t, 
for the different cases of interest. The dimensionality of the system, the linear size, the diffusion constant, and the 
localization length are denoted by d, L, D, and .$ respectively 

Uniform 
Extended 
Diffusion 
Localization 

Wave function 

IG(r, t)12a P 
$( r, t) a eCiker 

alJ/(r, t)12/at=DA144r, t)12 
I$(r, t>12ae-“~ 

(r2(t)) - (*(t)j2 

d( L* - 1)/12 
t2 

2 dDt 
d(d + 1)t2 
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a particle moving in an incommensurate potential. 

probability p(t) (see text) for 

that the difference between its energy and the given energy E is minimal. The value of 
a(t) = (4(t) 1 H2 1 t/~(t)) - (#(t) 1 H 1 I/J(~))~ for t = 0 will indicate to what extent +(t = 0) is an 
exact eigenstate of the full system. In the second procedure the particle is put at the site the 
potential energy of which is the closest to the given energy E. In that case a(t) = 2V takes its 
maximum value. 

During the solution of the TDSE we monitor the norm of the wave function II I,L( t) II = 
( \c/( t) I $( t))l/* which has to be one to numerical precision, the energy E(t) = ( \c/( t ) 1 H I q(t)) 

and its variance a(t) which both should be constant (a first check on the accuracy of the SPF 
since an SPF does not conserve energy in a strict sense), a combination of the first and second 
moment as indicated in table 5.1, and the return probability [42] p(t) = I (I, leMHf I I,) I 2 in case 
the particle starts at site I,. If the initial state was prepared by diagonalization of a subsystem A’ 
the return probability is defined as p(t) = C, E At I (I I emiHt I l) ) 2. 

Some representative results are shown in figs. 5.1-3. In all cases V= 1 and Q = 3.1 and the 
time step 7 was chosen such that at least three-digit accuracy was obtained. The initial wave 
packet was prepared by diagonalization of a subsystem except when explicitly stated otherwise. 
In practice quantities such as 5 and D as defined in table 5.1 will depend on time and approach 
their asymptotic constant value for sufficiently long time only if the ansatz is correct. 

In fig. 5.1 the three relevant quantities are shown for the case where W= 2.1. It is seen that 
the calculation for E = 2.2 strongly indicates that there is localization. The function t(t) 
oscillates around a localization length of 5 = 11. The return probability is substantially different 
from zero, and there is no reminiscence of diffusive or extended motion. But what happens at 
E = 2.0? If the calculation for E = 2.2 already suggests a localized state, the data for E(t) 
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Fig. 5.2. Results for [(t)=\i((r2(t))-(r(t))‘)/2 f or a particle moving in an almost periodic potential. 

represented by the solid line should also be interpreted as such. As Andre and Aubry [46] showed 
that (5.1) is self-dual if IV= 2V and that all states are exponentially localized if IV> 2V, the 
data of fig. 5.1 would clearly be compatible with theory. However some more care is required 
when analyzing results obtained from the solution of the TDSE. Closer inspection shows that 
almost to machine precision, the initial state is also an exact eigenstate of the full system and 
remains unchanged during the integration process. Therefore it is no surprise that p(t) and t(t) 
show little time dependence. In other words not much can be learned from these data. 
Fortunately this problem is easily circumvented by changing the initial state. Also shown in fig. 
5.1 are data of t(t) for E = 2.0 (dashed-dotted line) whereby the particle starts at a site at which 
the potential energy matches the specified energy. The presence of time-dependent variations is 
now apparent. The asymptotic behavior however does not depend on the choice of the initial 
state. The simulation results are in concert with theory. 

Fig. 5.2 shows c(t) for a potential strength of W = 1.9. From theory [46] one expects all states 
to be extended. First note the difference in time scale with respect to fig. 5.1. For E = 2.05 (see 
fig. 5.2a), t(t) grows linearly with time, the behavior expected for an extended state. For 
E = 1.75 we face the same problem as in the case E = 2.0, IV= 2.1 when the interval of 
integration is confined to [0, lOOO]. However for 1000 < t < 3000, t(t) starts to increase slowly 
and once t > 4000, t*(t) a (r*(t)) - (r(t))’ a t* such that the particle moves like a free one. In 
other words for E = 1.75 the wave function is of the extended type, in agreement with theory. 
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Fig. 5.3. Same as fig. 5.2 except that the data represented by the dashed and dashed-dotted line have been obtained 
from a calculation whereby the initial state was not prepared by diagonalization of a sub-system. 

After waiting for a sufficiently long time, the particle escapes from the 125site sub-system and 
behaves as if it were free. 

From these calculations it is already clear that one must be cautious when interpreting the 
data and this is once more demonstrated by figs. 5.2b, c where it shown how the finiteness of the 
lattice can lead to artifacts. Extended-state behavior is expected and from fig. 5.2b it follows that 
this is indeed the case if t < 750. For t > 750 large oscillations in <( t)/L are observed. Repeating 
the same calculation for a lattice that is ten times larger (see fig. 5.2~) reveals that for t -c 7500, 
<( t)/L is almost exactly the same as in fig. 5.2b provided the time scale of the latter is expanded 
by a factor 10. There is no doubt that this behavior is only due to the finite size of the lattice. 
The oscillations result from interference with waves that have been reflected as the boundary. 
The smaller the system, the larger these interference effects and the more pronounced the 
oscillations will be. Note that the origin of these oscillations is different than in the case W= 2.1, 
E = 2.0 (see fig. 5.1). There the average value of t(t) = 11 -X L = 1001 whereas in fig. 5.2b, 
100 < t(t) < 300 for t > 500 and L = 1001 so that [(t) is of the order of L. 

Theoretical studies [47,48] have shown that the spectrum of Hamiltonians with almost periodic 
potentials can be rather peculiar and complicated and may depend very much on the specific 
form of the potential. In particular, for the Aubry model it has been established that for I+‘< 2V 
there may appear very narrow bands of extended states and small band gaps [66]. In fig. 5.3 
results for t(t) are presented for the ase W = 1.9 and several values of E -c W. Clearly for 
E = 1.80, 1.82, and 1.85 there is no doubt that the particle is in an extended state since t(t) a t*. 
For E = 1.75 two additional calculations are shown. The dashed curve is obtained by letting the 
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particle start at the site where the potential W cos( QZ) = 1.75 but the motion is restricted to an 
open ended chain of L = 1001 sites. It is seen that t(t) has a tendency to saturate at a value of 
about 100 lattice sites. Repeating this calculation on a L = 1001 site lattice (with the same initial 
condition) yields the dashed-dotted line, suggesting an extended state. The difference between 
the slope of this straight line and the slope of the solid (E = 1.75) line for t > 3000 is striking. 
Close examination learns that both states have a slightly different energy (the fourth digit differs) 
but more importantly in terms of eigenstates of the Hamiltonian, the initial wave packet for the 
dashed-dotted case is completely different from the solid-line case. Therefore it should be no 
surprise that the slope of t(t) is not the same. 

We now summarize what has been learned from this example. Interpreting the data in terms of 
extended or localized states is not difficult, provided sufficient checks have been made to rule out 
boundary effects. Also the wave packet should actually exhibit some non-trivial time dependence 
because otherwise one may draw a completely wrong conclusion. If the data are analyzed 
properly the conclusions are in full agreement with established theoretical results. 

5.2. Anderson localization 

The Anderson model of localization [36] is governed by the Hamiltonian 

H=V/ 
nEA 

and describes a 
potential We,. 

e IlEA 

particle moving on a d-dimensional hyper-cubic lattice A and feeling a 
The distribution of the random variable en is uniform over the 

random 
interval 

[ - l/2, l/2], W sets the strength of the random potential, and V is the hopping energy which in 
our calculations is taken to be one. 

(5.2) 

Model (5.2) is one of the simplest models that describes most of the essential features of 
electrons in disordered systems. It has been the subject of extensive theoretical studies and 
observable effects due to localization have been predicted and confronted with experimental data 
[67-721. 

From the point of view of computer simulation the key problem is to reconcile results 
obtained from simulation of two-dimensional (2D) systems with current theories. In order to 
avoid the repeated use of the term 2D, it will be assumed for the remainder of this section that 
the discussion is about the 2D system only, unless stated otherwise. Theoretical analysis based on 
mode-coupling approximations [73,75], diagrammatic expansions [76,77], and field-theoretical 
methods [78,79] all show that there is always localization. The predictions of these theories are in 
agreement with a theory based on scaling arguments [80,81]. However as the strength of the 
random potential diminishes, the localization length becomes so astronomically large that for all 
practical (experimental or numerical) purposes the system is metallic. 

On the other hand numerical simulations not analysed with the help of scaling theory, suggest 
that there is indeed a critical value, the estimates of the critical disorder being in the range 
6 G W/V < 7 at the band center [16-l&82-87]. One finds that there is an abrupt transition from 
a localized to an extended regime as the degree of disorder diminishes. More recent, refined 
calculations analyzed by means of scaling hypotheses [88,89] yield results which are compatible 
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Fig. 5.4. The function t(t) = \i( ( r2( t)) - (r( t))‘)/2 for the 2D Anderson model of localization as a function of 
time t and for several values of the disorder W, obtained from the solution of the TDSE for 179 x 179 lattices. The 

energy of the wave packets E = 0. 

with the scaling theory and can be understood in terms of a bound state in a potential well [90]. 
Following the motion of the particle as it moves through the random medium is the most 

direct numerical method for probing localization effects, as is most evident from Anderson’s 
original formulation [42] of localization. It is therefore remarkable that simulations based on 
solving the TDSE [16-18,871, do not agree with other numerical and theoretical work as far as 
the absence of an Anderson transition is concerned. As SPF algorithms are more efficient that 
the methods used in previous work, it is possible to examine whether this disagreement can be 
resolved by simulating larger systems for longer times. 

The quantities computed from the time-dependent wave function are the same as in the case 
of the almost-periodic potential model treated in the previous section. For each value of W/V, 
the time step T was chosen such that there is no noticeable (within three digits) effect on the 
physical properties of interest. For the largest systems studied (209 x 209) some of the propa- 
gator look-up tables have been stored in 32-bit floating point arrays, as discussed in chapter 4. It 
has been checked that this did not change the results (within three-digit accuracy). For all values 
of W (V= 1) studied taking a time step r within the range [0.05, 0.21 was found to be adequate. 
The largest simulations (a square of L* = 43681 sites, lo5 time steps) took approximately 6 hours 
of CPU time on the one-pipeline CYBER 205. 

A collection of results for t(t) for several values of the disorder W( V= 1 in all our 
calculations and time t is measured in units of V) is shown in fig. 5.4. Each curve is obtained by 
averaging two to five statistically independent TDSE solutions of square lattices of 179 x 179 
sites. In all our calculations the energy of the wave packet E = 0, i.e. we concentrate on those 
states for which the localization length for a fixed value of W is the largest. From computational 
point of view this clearly is the most difficult situation to study because if the calculation shows 
that the E = 0 states are localized all the other states are also localized. For IV> 7 there is little 
doubt that there is localization. Over a large time interval c(t) is effectively constant. It should 
be mentioned that the most advanced calculations of this type have covered a time interval which 
is at least an order of magnitude smaller than in our simulations, thereby employing an 
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t 

Fig. 5.5. The function t(t) for the 2D Anderson model of localization as a function of time t for W = 6. Solid line: 
179 x 179 lattice, initial state by diagonalization of an 11 x 11 subsystem. Dashed line: 179 X 179 lattice, particle at a 
site with energy WC, - 0. Dotted line: 127X 127 lattice, initial state by diagonalization of an 11 X 11 sub-system. 

Dashed-dotted line: 127 X 127 lattice, particle at a site with energy WE, = 0. 

algorithm which is numerically unstable [87]. From fig. 5.4 it is clearly seen that for W= 7 and 
t < 1000 the asymptotic regime has not yet been reached and therefore earlier estimates [87] for 
the localization length are to be considered as unreliable. For W= 6 one might draw the 
preliminary conclusion that the asymptotic regime sets in a t 2 6000, but a more detailed 
analysis is required in order to make a definite statement. We will return to this case later on. 

For W = 4 and W = 5 there is also a clear tendency for saturation in E(t). If this were indeed 
the true behavior it would be quite remarkable since comparison with W= 6 shows that the 
asymptotic regime is approached more rapidly for IV= 4 than for IV= 6. However, from the 
first entry of table 5.1 it follows that for IV= 4, t(t) for t > 5000 is close to the asymptotic value 
for a uniform distribution over all sites, meaning that the wave packet is spread out over the 
whole lattice without being much influenced by the presence of disorder. Clearly, for IV= 4 and 
W= 5 boundary effects are important. Starting from t = 0, the extent of the wave packet grows 
at fast pace and saturates after a certain period of time (which increases with the lattice size) 
because of reflection by the lattice boundaries. 

The major question is what happens at W= 6. If there is localization, as in expected from 
theory, earlier simulations [16-18,871 may have failed to recognize this because the size of the 
system was to small and the time interval to short, and the conclusion that there is an abrupt 
transition at W = 6 would have been based on the behavior of the wave packet in a non-asymp- 
totic regime. To examine this problem in detail, calculations with different initial conditions and 
on lattices with different size have been carried out. 

In fig. 5.5 results are shown for lattices of size 127 x 127 and 179 x 179, for the two different 
kinds of initial states. Each of the curves is the average of four independent runs. The average 
spread in energy a( t ) = 0.3 if the wave packet is prepared by diagonalization of a sub-lattice. The 
difference between the pairs of 127 x 127 and 179 x 179 data can be traced back to the choice of 
the initial state [91]. If at t = 0 the particle is put at a particular site, the wave packet, as a linear 
combination of eigenstates, will be a superposition of all eigenstates, including those with E Z 0. 
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Fig. 5.6. The function E(t) for the 2D Anderson model of localization as a function of time t for W = 6 and a lattice 
of size 209 x 209. 

As states with E # 0 are localized better than the E = 0 eigenstate(s), the value of t(t) will be 
lower than in the case where the initial state is an eigenstate of the subsystem. Only if t -+ cc 

both calculations should lead to the same answer, if there is localization at all. 
The difference between the same kind of 127 X 127 and 179 X 179 data suggests that 

boundary effects may still be substantial. Suppose that the value of 5( t = 10000) = 17 estimated 
on the basis of the 179 X 179 simulation is close to the correct localization length. Then, 
according to the exponential fall-off of the wave function, the probability for finding the particle 
at a distance half the lattice size of the smallest system (L = 127) would have dropped to a 3% 
level, which I believe is too large to be neglectable. In an effort to eliminate all boundary effects, 
simulations have been carried out for systems of size 209 x 209 for times up to t = 20000, the 
averaged results of three runs being depicted in fig. 5.6. Detailed analysis of the numerical data 
reveals that there is no evidence that for W = 6 there is no localization. For 1000 G t G 20000, 
c(t) fits very well (RMS error less than 1%) to a function of the form a = bt-0.8. Extrapolation of 
the 179 X 179 yields an estimate for the localization length which is in excellent agreement with 
the value 5 = 19.0 + 0.3 derived from the 209 x 209 simulations. 

The values of the localization length as a function of W are given in table 5.2, together with 
results obtained by other methods. It is clear that there is satisfactory agreement. Pushing the 

Table 5.2 
Comparison of results for the localization length (X = 25) of the 2D Anderson model at E = 0 obtained by the TDSE 
approach with the numerical data of refs. [88] and [90]. The trivial factor 2 between X and 5 stems from a slight 
difference in the definition of the localization length 

W h(present) 

6 38.0 
7 21.4 
8 12.8 

10 5.6 

X(ref. [88]) 

37.46 
18.53 
11.07 

5.45 

h(ref. [90]) 

41.26 
18.79 
10.91 

5.34 
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TDSE approach to still lower values of IV, one again faces the problem that because of the rapid 
increase of the localization length, both the lattice and time interval have to be enlarged 
accordingly. 

On the intermediate time scale, i.e. for times larger than the microscopic time scale (V = 1) but 
smaller than the time scale on which interference effects are dominant, E(t) fits well (RMS error 
less than 1%) to the power law E(t) = d + ct y with y = 0.5 + 0.1, in agreement with the 
mode-coupling theory [73-751. For instance if IV= 6 the power law holds for t E [lo, 501. The 
time interval over which this behavior is observed shrinks as W increases. 

To summarize, it has been demonstrated that the SPF allows the solution of the TDSE for 
sufficiently large lattices and time periods such that the results are in concert with the present 
knowledge on 2D Anderson localization. 

5.3. Continuum problems 
To illustrate the application of the SPF approach to models formulated in continuum space I 

will confine the discussion to linear parabolic partial differential equations of the type 

(5.3) 

as it is of sufficient interest, generality and complexity to serve as a typical example. 
Theoretical determination of high-resolution electron-microscopy (HREM) images requires 

the solution of (5.3) provided h = 1/4nk, and V(r) = V(x, y, z) = 2meU(r)/A* in which m 
and k are the relativistic values of the electron mass and wave vector respectively and U(r) is the 
potential representing the thin specimen foil. In (5.3) the convention is such that the direction of 
electron incidence is along the z-axis. The electron wave function II,(r) can be obtained from 
+(r) by using the relation 

444 = e 2Ti”*r6w (5.4 

Identifying the space coordinate z with the “time” t, solving (5.3) is tantamount to solving the 
TDSE for a particle moving a two-dimensional time-dependent potential, provided we restrict 
ourselves to the case of normal incidence (k, = k, = 0). In most applications the time depen- 
dence of the potential is not taken into account [9]. The objective of HREM-image simulation is 
to solve eq. (5.3) numerically and as already mentioned in chapter 1 this is most conveniently 
done by means of PF methods. 

Alternatively, puting X = -1/2k, k = w/c, k, = k, = 0 and V(r) = V(x, y) = k*[n(x, y)* - 
11, (5.3) is the Fresnel approximation to the wave equation of light of frequency w propagating 
through a medium of which the index of refraction depends on the transverse position (x, y) 
only. Under certain conditions the properties of light in an optical fiber can be described by such 
an equation [lo-141. As already mentioned in the introduction, the numerical methods used for 
this optical problem are identical to those for the HREM image simulation. In the discussion 
that follows the terminology used in the latter application will be adopted. 

In the first applications of the multi-slice approach, matrix multiplications were used to 
perform the propagation and hence the calculation time was proportional to the square of the 
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number of sampling points (diffracted electron beams) N used to represent the electron wave 
function (see for example ref. [38]). Significant improvement in multi-slice computations has 
been the use of the FFT to calculate the free-electron propagator [lo-14,921 thereby making the 
computation time proportional to N log N instead of N2 (see also section 2.2). The main 
advantage of transforming to Fourier space is that it is easy to take derivatives with respect to 
the coordinates, just as in conventional spectral methods [24,93]. Although the gain in efficiency 
resulting from the use of FFT’s is substantial, the FFT multi-slice approach still has some 
drawbacks, from physical as well as computational point of view. In particular the artificial 
periodicity resulting from the use of the FFT and the practical constraint of being limited to a 
number of mesh-points that is a power of two, reduce the usefulness ofthis type of algorithms. As 
an extensive discussion of these aspects is given in ref. [9] there is no need to reproduce it here. 

Improvement of the computational technique requires the development of accurate and 
efficient methods that perform the free-electron propagation on the electron wave function in its 
real-space representation, without making the detour to Fourier space [9,94]. The so-called 
real-space multi-slice (RSMS) method, proposed by Van Dyck [94] has been a first step in this 
direction. It has been pointed out that the original proposal had some serious deficiencies [95,96], 
originating from the fact that the time-step operator for free-electron propagation was approxi- 
mated in a way that violates the basic requirement of stability. In fact this approach amounts to 
solving the parabolic equation by standard explicit method [19]. 

Recently a more systematic approach has been introduced in which the action of the 
free-electron propagator on the wave function in real space is approximated by forming a linear 
combination of the values of the wave function before propagation [97,98]. The coefficients 
specifying the linear combination are chosen such that the resulting approximant to the 
free-electron propagator combines the values of the wave function in a limited number of 
sampling points. This implies that the computation time becomes proportional to N instead of 
N log N. A possible disadvantage of this approach is that it needs a “tuning” of the parameters 
determining the accuracy of the approximant to the propagator. In addition, both the FFT-based 
approach and the RSMS method require a smoothing procedure [97,98] for the crystal potential 
to reduce the number of mesh points to an acceptable level. 

Clearly one of the central problems is to perform the free-electron propagation by a real-space 
method. It is sufficient to concentrate on propagation in only one direction since in most cases a 
two-dimensional orthogonal sampling grid can be used [9]. Experience has shown that for many 
materials, employing the most simple three-point approximation to a2/ax2 may render the 
computational method less efficient [9,97,98], and similar conclusions have been reached in quite 
different contexts [3,99-1011. Therefore it may be of interest to develop a real-space SPF 
algorithm that can deal with this more complicated situation. 

In general it is clear that the increase in computing time, due to the use of a five or more point 
approximation to a’+‘, should be compared to the gain in accuracy or, in other words to the 
extent by which the number of mesh points can be decreased. As the shape and strength of the 
potential set upperlimits to both the mesh size and time step, the question of efficiency can only 
be studied by considering explicit examples. In this section this will be done by comparing a 
properly generalized version of RS SPF algorithms with existing RSMS code [97,98] for 
computing HREM images. 

To solve a continuum problem such as (5.3) some discretization procedure is necessary. The 
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most straightforward approach is to replace Cl*,%* by one of its finite difference approxima- 
tions. Quite generally one can write 

= a-* 5 c,(Qhb(xo + @I, 
X=X0 q=-Q 

(5.5) 

where Q determines the number of points in the difference formula, c4( Q) = c_J Q) are known 
coefficients (which will depend on the difference scheme used) and S is the mesh size. Remark 
that instead of using finite differences it may be expedient to discretize the problem by other 
methods. For instance generalized meshes [loll, more appropriate for the case at hand may be 
used or, as shown in section 6.3, changing the representation of the states may also be beneficial. 

Following exactly the same procedure as outlined in chapter 1, the discretized kinetic energy 
can be expressed in terms of the lattice-model kinetic energy 

K= 6-* 5 ; c,(Q)( G+c/+, + c:+.cI) + co(QP-* i n,. (5.6) 
q=l I=1 I=1 

Note that the last term in (5.6) is the unit matrix multiplied by a constant factor. Hence it 
commutes with any other matrix and consequently exp( -itc,( Q)S-*Ef=in,) can be taken into 
account before or after the integration procedure. It changes the phase of the wave function in a 
trivial manner. In what follows this term will be dropped. 

From (5.6) one can guess that generalizing the lattice-model description to the d-dimensional 
case merely amounts to replacing the indices 1 and q by vectors n and e, i.e. the kinetic energy 
takes the form 

T= c c k?(&,+e+ Cn=&?4~ (5.7) 
n=A e=Q 

where in this case Q denotes the set of lattice vectors connecting two mesh points and b, are 
known numbers. As already mentioned above, for most cases of interest it is sufficient to 
concentrate on propagation in x and y direction separately. In other words approximating e-“r 
by a RS SPF is tantamount to finding an approximation to eCiTK, as explained in appendix B. 
Actual computations however are carried out for 2D systems. 

In the RSMS approach [98] the free-particle propagator for a slice of thickness E is 
approximated by 

e -i7K = 5 5 a,(R Q>(cl+q-tp + cI++~cI), 
I=1 p=o 

where r = c/4nk,S2, a,(P, Q) is given by [98] 

N 

a,( P, Q) = Jim, $ & e2Ti’p/N e -i~N2[co(Q)+2~~=,c,(Q)cos(2711q/N)] 
3 

-+ 
l-l 

(5.8) 

(5.9) 
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P 6 L/2 is an adjustable parameter that determines the accuracy of the approximation. The 
underlying idea of this approximation is the following [9,97,98]. As the velocity of the incident 
electron is large, the spreading-out of the wave function is limited to a relatively small region in 
real space of the electron propagates freely over a distance of one slice. Hence the wave function 
at a certain mesh point may be expressed as a restricted sum of wave functions at neighboring 
points before propagation. The computation time of RSMS is proportional to PLd. 

In (5.9) limit N -+ cc has deliberately not been replaced by an integral sign in order to 
emphasize an apparent inconsistency with respect to the discretization procedure that led to 
(5.6). From (5.6) and (5.8) one would expect to find that a,(P, (2) is related to the discrete 
Fourier transform of eWiTK, i.e. formula (5.9) without lim,,,. As in most practical applications 
L is relatively small, the coefficients ap( P, Q) do not vanish rapidly as p increases, a vital 
property for the truncation to P terms to make sense. This is then remedied by taking as in (5.9) 
the limit N -+ co [98]. 

Note that the operator at the right-hand side of (5.8) is not unitary. In practice P is 
determined by comparing RSMS data obtained with different values of P to results of 
high-precision reference calculations and selecting the minimum value of P for which the RSMS 
data satisfy a particular error criterion [97,98]. An advantage of this approach is that once for a 
given material parameters such as Q, P, 6 and e have been determined, they can also be used to 
compute images of different structures of the same constituents or of other materials with similar 
electron scattering characteristics. 

To develop RS’, and RS, for the more complicated model (5.6) (or equivalently (5.7)) we 
simply repeat the procedure explained in chapter 2. The first step is to write 

(5 SO) 

with Kg = 8-zc,(Q)~,“,, (c:c~+~ + cL,c,) and the second to construct an RS algorithm for each 
e -jTKq, as is explained in more detail in appendix B (see eqs. (B.9911)). Implementation of these 
algorithms only requires some minor modifications of the code of expK presented in chapter 3. 
Clearly the computation of RS, or RS, will be proportional to QLd. 

To make contact with the real-space HREM-sim~ation technique, the coefficients c,(Q) are 
chosen to be [98] 

2(-1)q 
c,(Q) = 42 

(Q!)’ 
(Q+~>!(Q-+ ; 4zop 

(5.11) 

whereby cO( Q) = -2C$ic,( Q). This choice corresponds to the (2Q f I)-point Lagrange for- 
mula for the second derivative (see for instance ref. [102], p. 914). 

Table 5.3 contains some results for the error between the exact continuum free-electron wave 
function (_H’ = - Z12,Glx2 - a2/8y2) and approximate wave functions computed by RS,. The 
electron moves on a square of linear size X= 1 and is subject to pe~odic-boundary conditions. 
No results for RS, are shown because for the particular choice of 7 and 6 (see table 5.3) the 
error is too large for RS, to make sense. On the basis of the additivity of error bounds (see also 
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Table 5.3 
Representative results for the absolute value of the error between the exact continuum wave function and the 
approximate wave functions for a free particle moving on a square of length X = 1, computed by RS,. The initial state 
is of the form eznin*‘a (n = (n,, n,)), i.e. an eigenstate of the free-particle propagator. The number of time steps 
m =lOO, the mesh size S = l/16, and the time step T = 0.0005. A dash indicates that the error has reached its 
maximum value in less than 100 integration steps 

(n,, ny> Q=l Q=2 Q=3 Q=4 Q=5 

(0, 0) 0 0 0 0 0 

(0, 1) 0.26 x 10-l o.15x1o-2 o.19x1o-2 0.26 x 1O-2 0.31 x 1o-2 
(191) 0.51x10-’ 0.31 x 1o-2 0.37 x 1o-2 0.51 x 1o-2 0.62 x 1O-2 
(232) 0.78 0.66x10-r 0.12 x 10-l 0.86 x 1o-2 0.99 x 1o-2 
(3,3) - 0.66 0.14 0.33 x10-r 0.10x10-’ 

appendix A) it is to be expected that the error will grow with Q. Moreover from (5.11) it follows 
that for a fixed 4, c,(Q) increases with Q and consequently this will lead to an additional 
contribution to the error on the SPF. However as Q increases the finite difference approximation 
itself will become more accurate. This competition between increase in accuracy resulting from 
the use of a better difference scheme and decrease in accuracy due to the increasing number of 
operators in the SPF is nicely illustrated in the second and third line of table 5.3. Once the 
regime is entered where the SPF effectively determined the error, the only way to improve the 
approximation is to reduce 7. In this regime the error scales with 74 as might have been 
anticipated from the discussion in chapter 2. From table 5.3 it is seen that for fixed Q the error 
increases as the wave vector of the initial state increases. This is not surprising. The larger the 
wave vector, the more rapid the oscillations of the wave function and hence the more difficult it 
becomes to represent accurately the derivatives of the wave function with respect to the 
coordinates by means of a (2Q + l)-point formula. 

Both RS, and RS, have been incorporated into a RSMS program [97,98] by replacing calls to 
the RSMS code by calls to RS, or RS,. The efficiency of RS, and RS, as compared to RSMS 
(with L = 16, P = 7, Q G 6) has been evaluated by using the same error criteria employed in 
RSMS HREM-image simulations. These differ from the RMS-based error analysis performed in 
chapter 4 in that only a few components (the most central, n close to zero) of the Fourier-trans- 
formed image are used to estimate the error [97,98], a criterion based on the experimental 
situation in which there is dominant forward scattering of the electrons. As discussed above, the 
error on these components can be reduced by enlarging Q. It follows that RS, is not as efficient 
as RSMS, the reason being that for a fixed slice thickness E( 7 = ~/41rk,6~ = 0.14 in this case) the 
number of intermediate steps m for each slice has to be taken rather large (m < 10) in order to 
satisfy the error criteria. Repeating the calculations using RS, leads to the conclusion that RS, is 
competitive with respective with respect to the RSMS algorithm [103]. 

6. Diffusion equation 

From the theoretical foundation of the SPF (symmetrized product-formula) approach, pre- 
sented in chapter 2, it should be evident that the principle ideas remain the same if “it” is 
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replaced by a positive number /3. Instead of solving the TDSE (Time-Dependent Schriidinger 
Equation) we then solve the initial value problem for the “generalized” diffusion equation 

where WV = 64(P), . . ., @NW) T is a vector representing the values of the variables at the 
“sites” 1,. . . , N, H is a real symmetric N X N matrix and @ = Q(O) is the initial state. 

Apart from applications to genuine diffusion problems where H is a finite-difference ap- 
proximation to the Laplacian, methods to solve (6.1) are of interest to quantum mechanics 
because they can be used to compute the ground state properties of a model described by a 
Hamiltonian H. The aim of this chapter is to demonstrate the usefulness of SPF-based 
algorithms by applying them to quantum-mechanical problems. I stress however that the SPF 
algorithm to be discussed below can equally well serve to solve a d-dimensional diffusion 
equation on a lattice of arbitrary shape. My motivation for chasing quantum problems is merely 
a matter of having ample examples at hand. 

To see how (6.1) or equivalently, its formal solution Q(p) = emPH@, can be employed to 
compute the eigenvector corresponding to smallest eigenvalue of H, let us denote eigenvalues 
and (normalized) eigenvectors of H by E, < E, < - - - and $,, n = 0,. . . , N - 1 respectively and 
assume that the ground state q0 is non-degenerate. Expanding the arbitrary initial state @ in 
terms of 4, gives 

N-l 

@(/3)=e-PH@=e-BEo J/o(J/oI@)+ C e-P’E~-Eo’$,($nI@) (6.2) 
if>1 

showing that for p( E,, - E,) s== 0, n >, 1 the sum in (6.2) can be neglected so that 
lim p+,@(P)/II @(P) II = 4%. 

The reader may have noticed that this technique of determining the eigenstate corresponding 
to the smallest eigenvalue of H is basically the same as the well-known inverse iteration method, 
i.e. the power method applied to the matrix H-’ 
fixed, q0 is found from (emTH)“@(0), 

[104]. Indeed putting /3 = WZT and keeping 7 
i.e. by repeated iteration with eerH. Note that the 

replacement of H-l by the exponent of H will increase the rate of convergence considerably. As 
the effect of applying eerH to an arbitrary state @ is to filter out all but the projection onto the 
ground state qO, this approach is often called projector method (PM) [105-1071. Application of 
this approach to for instance many-body systems is impossible because of the large number of 
arithmetic operations required to complete one iteration step. A possible way out is then to 
perform the inverse iteration by importance sampling methods [105,108-1101. 

Just as in the case of the TDSE, in practice it will not be possible to compute (eeTH)“@ when 
H is not diagonal and @ is arbitrary but it can be calculated approximately by means of the SPF. 
In this chapter we will confine ourselves to a discussion of second-order SPF algorithms since for 
our purpose they have proven to be adequate. To simplify the notation somewhat introduce the 
operator H( 7) defined by 

,-~WT) E e -7H,/2 e-rH z e-7H~/2 
3 (6.3) 
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where H = HI + Hz. This construction makes sense because the right-hand side of (6.3) is 
positive definite. Also note that e-7H(7) is symmetric. In concert with the convention above, the 
eigenvalues and corresponding eigenvectors of H(T) will be denoted by E,( 7) G E,( 7) G . . - 

and q,(7), n = 0,. . . , N - 1 respectively. 
In order to show that H( 7) converges to H first note that by definition lle-7H 1) = eeTEO, 

Ile- 
TH(T) ,, = e- Q%(~) Furthermore by the Rayleigh-Ritz variational principle E,, >, E$’ + Ec2) . 

where E,$l’ and Ei2’ are the smallest eigenvalues of HI and H2 respectively. Putting A = -HI 
and B = - H2 in identity (A.19) and making use of the elementary properties just mentioned we 
obtain 

11 e-~H _ ,-WT) 11 < c273 e-d”+E62)), (6.4 

from which it follows immediately that lim 7 ~ 0 H( T) = H(0) = H. Approximating @( mr) = 
e -m7H@ by &(mr) = e- m7H(T)@ and invoking (6.4) reveals that , 

hardly a surprising result. 
Not surprisingly, in practice it will be impossible to take the limit 7 + 0 before we let m + co 

because this would imply that in order for /? = mu to be sufficiently large (remember that we 
must have p( E, - E,) zz=- 0, n > l), m has to be so large that this approach will become 
prohibitively costly. What is feasible though i,s to fix 7, perform a number (m) of 
“imaginary-time” steps and compare the result for @(mu) with qO. As in the case of ewPH@, if p 
is sufficiently large e -BH(7)@ will be proportional to the ground state of H(T), i.e. #0( 7). The 
question is now to what extent E,(T) and $,,( 7) are related to E, and #,,. 

6.1. Well-separated eigenvalues 

To investigate this problem theoretically assume for the sake of simplicity that the ground 
state #0 is not nearly-degenerate, i.e. E,, - E, x- 0, n 2 1. Our aim is to derive upperbounds on 

the difference between the exact and approximate ground-state energy 1 E, - E,(T) ) and the 
RMS error )I #,, - #0(r) 11. Application of the inequality 1 11 A 11 - 11 B 11 1 < 11 A - B 11 to (6.4) 

gives 

le-‘EO _ e--7Eo(7) , < c273 e-eY~+~~2’)~ 
(6.6) 

To derivei an upperbound on 1 E,, - E,(T) 1 we first prove that E,(T) < &. As eTH(-‘) = 
repeatedly using 11 AB (1 < (1 A 11 11 B )I gives (#O(T) 1 eTH(-%,(r)) = eTEoC7) = 

eiG/2+o(q-) leTH2/2 eTHl/2+,,( 7)) < 11 eTH212 eTHl12 11 2 < eT(-@ +h2’) < eTEO and hence E,,( 7) 

< E,. As ex - 1 > x, (6.6) then directly leads to 
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An upperbound on II+,, - qO( 7) 11 can be derived as follows. Multiply both sides of the identities 

w3(d I At> = 
(I),(T) leeTH - eCTHcT) 1 $n) 

e_7& _ e--7Eo(7) 

and 

’ 

to obtain 

I Nl I +o(+ I 2 = 
(~0(7)(e-rH-e--7H(7)I~n)(~nle7H(-r)-eTHI~0(7)) 

4 sinh2[7(E0(7) - E,)/2] 
3 

(6.8a) 

(6.8b) 

(6.8c) 

A similar expression for I ($,,( 7) I 4,) I 2 is found by interchanging the role of $,( 7) and #,, 
n 2 0. Consider how the case n 2 1 and make the very crucial assumption that 

(6.9a) 

and 

(6.9b) 

where c1 > 0 and cz > 0 are constants, the meaning of which will be discussed later. From (6.8) it 
follows that 

N-l 

(6.10) 

Extending the sum on the right-hand side of (6.10) to include the term with n = 0, noting that 
11 e7H - eTHl/2 eTHZ eTHl/2 II < 11 e_TH - e-7&/2 e-~H2 e-TH,P- 11 e7(&+H)+P) and involving (6.40) 

yields Cr61’ I (+, I 4$~)> I 2 G C;eT274 e&%-#-&$2))e TE s 
&Y’T” eQ0-E6 -E6 ‘)_ In th 

is equivalent to 1 - I ( $0 I #0(r)x I 2 < 
e same manner one finds 1 - I ( t,bo I Go(~)) I 2 G c&,274 eT(Eo-Eo ‘--@‘) 

and combining both results then gives 

1 - I( Jlo 1 +bo( T)) 1 < c&v274 eT(Eo-E6”-EE62)), (6.11) 

where e = max( ci, c2). To obtain the desired bound on the RMS error it is necessary to remove a 
rather trivial ambiguity. Clearly if Go is an eigenstate so is -qO and this change of sign will have 
a drastic effect on II J10 - $0(~) Il. I n order to circumvent this problem choose the sign of #0 
such that Re( \c10 I$,,( 7)) >, 0. Further note that since H and H( 7) are real and symmetric all 
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eigenvectors are real. Then 11 q0 - qO( 7) 11 = /2(1 - Re( q0 I$,( 7))) = \j2(1 - I( t,bo 1 +b,( T)) I , 

and making use of (6.11) gives 

(6.12) 

From upperbound (6.7) we learn that if mr(E, - EO) z+ 0 (n 2 l}, m successive applications of 
e -‘H(7) to an almost arbitrary state @ will yield an estimate for the ground-state energy J!&(T), 
the error vanishing with r2. The upperbound (6.12) shows that if (6.9) is satisfied with c: = O(1) 
(compared to r), the same procedure will also yield a good estimate for the ground state itself. 
However (6.12) also suggest that if e is small, there is no guarantee that the SPF approach will 
provide us with an accurate estimate of qO, and this in spite of the fact that I E. - I&,( T) I may 
be very small. 

The most important but not the only class of problems where this break-down of SPF-based 
projector methods may occur are systems with nearly-degenerate ground states. Obviously for 
such systems it will be difficult to meet requirement (6.9) with E not too small or, in other words, 
r must be taken so small and the number of steps m so large (remember we should also satisfy 
/3( E1 - E,) z+ 0) that the technique will become very inefficient. A way out of this dilemma is to 
try to find approximations to all nearly-degenerate eigenstates simultaneously. How this can be 
accomplished is explained in the next section. 

6.2. Very close eigenvalues 

For simplicity of presentation it will be assumed that E, = E, and E, < E, < E, < * * . , i.e. 
only the two states with the smallest eigenvalues are (nearly) degenerate. The method to be 
proposed is sufficiently general to allow extension to situations where more than two eigenvalues 
are poorly separated. It is inspired by a well-known technique to determine a set of very close 
dominant eigenvalues but for our applications has proven to be superior. The basic idea is to 
combine the project technique and the variational principle into what will be called extended 
projector method (EPM). 

Under the conditions stated above, iterating with eerH on two different states @,, = G*(O) and 
@i = @i(O) will give for j = 0, 1 

C&~(P) =: eepEo( qo( q. 1 aj) f e-B(E1-Eo)$l( 3/l 1 Gj) + U(e-T(Ez-Eo))). (6.13) 

From (6.13) it is seen that if /3( E, - Eo) z+ 0, the states ~~(~) and @r( /3) will span the 
two-dimensional subspace containing the eigenstates Go and til provided (4; 1 Qj) # 0, i, j = 0, 
1. As E, = E,, the PM is expected to be inefficient because a very large number of iterations m 

zi==lm~) will be required to render the second term of the right-hand side of (6.13) sufficiently 

To separate the two eigenvalues the variational principle is applied as follows. Consider an 
iteration step taking \szzj( m7) to the states Gj(( m + 1)~). Assuming these vectors to be linearly 
independent, they span a two-Dimensions subspace. Denote the projector onto this sub-space by 
P,,_+r. By PoincarC’s theorem [105,106] the eigenvalues of P,,,+lHPm+l, to be denoted by E/(“+*), 
are upperbounds to the two smallest eigenvalues of H, i.e. Ej < Ejrn+‘). To compute EjMf’) we 
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should calculate the matrix elements P,,,+lHP,,,+ 1, but this can be avoided by applying the same 
variational principle to the operator erH directly. Solving the eigenvalue problem of Pm+ 1 eTHPm+ 1 

will yield upperbounds on e 7E~ instead of on Ej and as shown below it is more efficient to 
compute the matrix elements of Pm+l eTHPm+ 1 than those of P,,,+ lHPm+ 1. The iteration step then 
ends by applying to Qj(( m + 1) 7) the unitary transformation diagonalizing Pm+ lHPm+l. The 
resulting states are then used as input for the next iteration step. In this manner optimal use has 
been made of the information hidden in Qj(( m + 1) T), both from theoretical and computational 
point of view. 

In this discussion it has tacticly been assumed that both the projection and the variational 
calculation can be carried out using the exact operator e -BH but in practice this will likely prove 
to be impossible and we have to invoke the SPF. In practice this algorithm has been imple- 
mented as follows. Use the SPF scheme RS, to compute $j(( m + 1)~) = e-TH(7)&j( m7). Con- 
struct the matrices 

Bi,j= ( 6i((m + 1)~) 1 a,((, + l)~)), (6.14a) 

and 

(6.14b) 

note that B is positive definite, and solve the 2 X 2 eigenvalue problem Ax = XBx using a 
standard method. Applying the unitary transformation that diagonalizes A and B to the vector 
&J( m + 1) 7) and normalize the resulting vectors for numerical convenience. Replace &j( WZT) by 
the states thus obtained to complete the iteration step. 

The presentation above has been restricted to the case where simultaneous determination of 
the two smallest eigenvalues and the corresponding eigenvectors was required but it is obvious 
how the method should be generalized. One simply has to take as many different initial states as 
the number of eigenvalues desired. In principle there is the possibility that in the course of the 
procedure, two or more of the iterated states become linearly dependent. Then the iteration 
scheme would break down. In practice however we have never seen this happen if the initial 
states were chosen randomly. Needless to say that each of these states must have a non-zero 
projection onto at least one of the searched-for eigenstates. 

6.3. Spin-boson system 

This section illustrates the application of the EPM to the problem of determining the low-lying 
states of two-level system coupled to an oscillator. The model Hamiltonian reads 

H= -ha” + m(a++ ~)a’+ Ina+a, (6.15) 

where ua, (Y = x, y, z are the Pat&spin matrices describing the two-state system and a+( a) is 
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the creation (annihilation) operator of an oscillator mode of frequency 1(2 (units are such that 
A = 1). If the coupling constant C = 0 the tunnel frequency of the spin is 2h. For large C the 
ground state is nearly degenerate, implying that the effective tunnel frequency is small. Conse- 
quently keeping h and 0 fixed and changing C from zero to a large value (C x=- h, C x= ii?) will 
alter the properties of the eigenvalues and eigenstates of (6.15) considerably. 

To be more specific let us concentrate on the case L? > h. If C = 0 the two lowest energy levels 
will differ by about 2 h. This difference diminishes monotonically with increasing C. As the exact 
eigenvalues and eigenstates of (6.15) can be calculated to high accuracy [113-1171, model (6.15) 
provides an excellent example to test both the power of the SPF-based PM and its extension, the 

EPM. In our discussion we will confine ourselves to those aspects relevant to the material 
presented above, a much more complete analysis being given elsewhere [118]. 

We start by decomposing H = H1 + HZ, HI = -ha” and use eeTHl = d cash Th + ux sinh Th 
to compute its action. To calculate the action of eerH * we first have to choose a representation 
for the states of the system. It is appropriate to take as basis states the direct product of the 
oscillator eigenstates 1 n), n = 0,. . . , N - 1 (i.e. a3a 1 n) = n 1 n)) and the eigenstates of a’, i.e. 
up 1 S) = S I S), S = k 1 [113]. In this basis HZ is tridiagonal with respect to the oscillator states 
and diagonal in spin space. This means that in fermion language HZ can be written as 

N-l 

H2 = c [md( c,+c,+~ + c,=~c,) + nfk,‘c,] . (6.16) 
n=O 

Clearly (6.16) has the same structure as Hamiltonian (1.7) and consequently the methodology 
developed in chapter 2 can be applied. The break-up used in this particular case reads 

e --7H z e -7H,/2 e-dJ/2 e-rKo/2 
e 

-rKE ,-rK,/2 e-dJ/2 e-~H,/2, (6.17a) 

or 

e --7H = e - TH, /2 
e 

-7H,/2 e-~HE e-~Ho/2 ,-rH,/2 
3 (6.17b) 

where U, K, etc. have the same meaning as in chapter 2. Extensive calculations have shown that 
the former decomposition is slightly better than the latter and has therefore been used to 
compute the results presented below. Remark however that there is no argument pro or contra 
this finding. 

To compute the low-lying states of (6.15) without invoking the SPF, we rely on PoincarC’s 
theorem once more and solve numerically the eigenvalue problem of the truncated matrix, 
representing H in the basis I S) @ I n), S = + 1, n = 0,. . . , N - 1. The value of N is determined 
by requiring the eigenvalues and eigenstates to be independent of N. In practice N G 32 has 
found to be adequate for the majority of parameter values. 

Fig. 6.1 shows the RMS error between the exact ground state and the “ground state” obtained 
from the PM. In this calculation the model parameters were chosen to be h = 1, L? = 8, and 
C = 10, 20, 30. Table 6.1 lists the corresponding differences E, - E, and E, - E,. From these 
data we may expect on the basis of the theory of the two previous sections that the RMS error on 
the ground state will grow significantly if C + 30 and as demonstrated in fig. 6.1 this is indeed 
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Fig. 6.1. The RMS error RMS(PM) = 11 Jl,, - +(mT) 11 between the exact ground state $a and iterated state 
+(m7) = e-m7H(7)@/ lie- m’w”‘@ 11 as a function of the number of iterations m, calculated by applying the projector 
method to a two-level system coupled to an oscillator. The initial state @ was chosen randomly and h = 1 and D = 8. 

Solid line: C = 10 and T = 0.015, dashed line: C = 20 and T = 0.010, dashed-dotted line: C = 30 and r = 0.005. 

the case. Note that if C = 30, doing 150000 iteration steps is not sufficient to obtain the ground 
state with reasonable accuracy although the ground-state energy is reproduced quite well. This 
example shows that the PM can be very inefficient. 

Employing the EPM yields the results depicted in fig. 6.2. Apparently the problem due to the 
nearly-degenerate ground state has been removed. For C = 30, within less than 300 iterations the 
exact ground state is recovered within an error determined by 7*. Iterating on for instance four 
instead of on two states the EPM reproduces the first four low-lying states. Experience [118] has 
shown that when applied to this model, the EPM performs much better than techniques based on 
orthogonalization [104]. 

In general one cannot know beforehand whether or not the ground state is nearly two-fold 
degenerate. Therefore it is always good practice to employ the EPM with at least two but 
preferably more states. Also in the case where the ground state is well separated from the first 

Table 6.1 
Exact ground-state energy and differences between the lowest (approximate) energies of a two-level system coupled to 
an oscillator. The tunnel energy h = 1 and phonon frequency Q = 8 

C=lO c = 20 c=30 

7 = 0.015 7 = 0.010 7 = 0.005 

Eo 10.114 20.021 30.029 

J% - Eo 0.164 0.014 0.003 

E2 - 4 7.756 7.940 7.991 

Eo - Eo(T) 0.033 0.039 0.020 

Et-Eo(r) 0.179 0.053 0.021 

Et(r)- Eo 0.135 0.022 0.016 
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Fig. 6.2. Same as fig. 6.1 but instead of the projector-method the extended projector method was used to compute 
RMS( EPM). Note that compared to fig. 6.1 there is a large difference with respect to the scale of m. 

excited state, the EPM is more efficient than the PM and in addition the calculation will tell us 
that the ground state is indeed well-separated. 

7. Concluding remarks 

Starting from generalized symmetrized formulae (SPF), a new family of explicit and uncondi- 
tionally stable algorithms for solving parabolic equations has been introduced. Considerable 
attention has been paid to the analysis, both mathematically and numerically, of several different 
schemes that can be derived by applying the basic idea’s behind the SPF approach in a 
straightforward manner. 

From computational point of view, appealing features of some of the SPF algorithms are that 
they are easily vectorizable and intrinsically parallel. The computational efficiency of the 
algorithms has been evaluated and their performance has been compared to that of the 
Cranck-Nicholson method. An important conclusion is that for one-, two- or three-dimensional 
problems, the SPF algorithms are much more efficient than the Cranck-Nicholson scheme. This 
is not only due to the explicit character of the algorithms but is also due to the fact that SPF’s 
are providing more accurate approximations to the time-step operator than conventional 
methods. 

The most efficient SPF algorithm has been used to study Anderson localization on time and 
length scales previously inaccessible. Other applications have shown that the SPF method is 
flexible and can easily be adapted to deal with various kinds of boundary conditions, systems 
with different types of degrees of freedom (such as spin-boson models) etc. As only a small 
fraction of the possibilities to apply the product formula philosophy have been explored, there is 
a much room for further research in this field. I hope that this will encourage the reader to apply 
the SPF approach to solve other problems or develop new and more efficient algorithms than the 
ones proposed in this paper. 
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Appendix A. Error bounds 

This appendix contains the necessary mathematics for proving the convergence of the various 
approximation schemes. For numerical applications it is sufficient to consider the case where 
wave functions are vectors in a finite-dimensional Hilbert space and operators being finite, 
square matrices. The norm of a vector in this space is taken to be the usual one, namely II+ 11 
= m where (+ I#) = Ci$“$, t d f s an s or the scalar product of vector + = ( . . . , &, . . .) and 
\c/=(..., #i,...).ThenormofanoperatorXisdefinedby IlXll =max,,+,,=lllX#ll.Throughout 
this paper, wave functions are assumed to be normalized. 

To obtain upperbounds for the RMS error between the exact and approximate wave function 
at time t the following general result, easily proven by mathematical induction, is needed. For 
two operators X and Y one has 

IT-1 

11X”- Y”II G x0 IIX- YII IIwYyllm-n-l~ (A4 

which in the special case that X and Y are unitary operators simplifies to 

IIx”-y”II <mllX-- Yll. (A.4 

Putting X = eeiTH, t = rn~ and denoting the approximant to the time-step operator by Y yields 

IN,(t) -VW) II <ml1 X- Yll, (A.3) 

where Gx( t) = Xm$(0), 1C/=( t) = Ym$(0) and Jl(0) is the wavefunction at time t = 0, i.e. the 
initial condition. From (A.3) it is seen that the desired error bound follows directly from the 
knowledge of 11 X - Y 11. Note however that because of the triangle inequality I( A + B 1) 6 
11 A 11 + 11 B 11, there is the trivial bound 11 qx( t) - +by( t) II G 2. Therefore the right-hand side of 
(A.3) has to be less than 2 in order for the bound obtained from (A.3) to be meaningfull. 

We now compute 11 X- Y 11 for the Cranck-Nicholson (CN), the first-order, second-order 
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and fourth-order SPF (symmetrized product-formula) method. In the case of the CN method 
Y = (1 - iTH/2)(1 + iTH/2)-‘. Consider the operator 

F(T) = 1 - X-ly= 1 _ eiTH (I_ ic)(l + q’. 

Differentiating (A.4) with respect to r gives 

Integration of (AS) over T and making use of F(0) = 0 yields 

F(7) = - TITdX x2 eiAH(l + !!$!) 
-2 

, 

0 

from which it follows directly that 

Since 11 e-K-X)H 11 = 1 and I[(1 + iXH/2)-’ II < 1, (A.7) leads to 

hence 

(A-4) 

(A.61 

(A-7) 

(A-8) 

(A-9) 

where #,,,,t(t) = e-i’H\C,(0) and $cN(t) = [(l - iTH/2)(1 + irH/2)-‘]“J/(O). 
Calculation of similar bounds for the product-formulae proceeds along the same line but is 

more complicated than in the CN case because of the presence of noncommuting operators. The 
derivation of bounds on the first and second order formula presented below is taken from the 
work of Suzuki [30]. Introducing F(X) = 1 - eXA eXBe-X(A+E), d’ff 1 erentiation with respect to A 
gives 

aF(X) hA 

ah=e 

[eXB, A] e-VA+fO_ 

of Kubo’s 

[A, ehE] i’da e@--p)’ B] eaB lXdp epB B] e(h-P)B, 

(A.10) 

(AX) 
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aF(X) -=- 
ax / 

*dp eXA ep”B[~ B] e(x-k‘)B e-+‘+B) 9 (A.12) 
0 

Integrating (A.12) and using F(0) = 0 leads to 

F(T) = - /,;lh/d\dc1 eXA e@ [ A, B] e(‘-‘)B e-X(A+B), (A.13) 

and this in turn yields the identity 

7 
e~(A +W = Eva e~8 _ 

J J 
dX ‘dp eAA eL‘B [ A, B] e(A-P)B e(7-A)(A+B)e 

0 0 

In our case a = -iHi, B = -iH2, H = HI + H2 and therefore 

(A.14) 

lle-iTH - eeiTH1 emiTH2 11 g G 11 [H,, Hz] 11, (A.15a) 

Generalization of (A.15a) to the case where H = C&,H, is straightforward. Repeated applica- 
tion of the triangle inequality yields 

II e -irH _ fi e-irHq 

q=l II 

(A.15b) 

Exactly the same procedure is used to compute an upperbound on the RMS error of the 
second-order product formula. Putting F(X) = 1 - ehA12 eXB eXA12 e-‘(A+B), and differentiating 
with respect to X gives 

afw -= 
ax 

eW2 e”BG(h) eW2 e-h(A+B), (A.16a) 

where 

G(h) = :e -XB[ehB, A] + [ehA12, B] e-hA/2. 

Observing that G(0) = aG( h)/aX 1 x=o = 0 and integrating 

(A.16b) 

a2G(X) 

ax2 
= $emAB[B, [A, B]] eXB+ $ehA/2[A, [A, B]] epXA12, (A.17) 

twice directly leads to 

G(h) = lohdC”Jdldu(:e-“[B, [A, B]] eyE+ feYA12[A, [A, B]] epYA/‘). (A.18) 
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Substituting (A.18) into (A.16) and integrating (A.16) then finally gives [35] 

F(r) = :/6dh/d\d,bdv ehA12 ehB{eeYB[2B, [A, B]] evB 

+ew2[4 [A, B]] e--yA/2} eW2e-VA+B)_ 

Application of identity (A.19) to the case at hand results in 

Ile-i7H _ e-iTH,/2 e-iTHZ e-iTHl/2 11 G c2T3, 

and 

(A.19) 

(A.20a) 

II L&) - #2(t> II G c2tr2> (A.20b) 

where #2(t) E (e-7&/2 e--i% e-iTHl/2 m ) q(O). The constant c2 appearing in (A.20) is defined by 
c2 = ( ]] [ H,, [H,, H,]] 11 + 2 ]] [ H2, [IT,, H2]] ]])/24. Generalizations of (A.20) can be found in 
Suzuki’s paper [35]. 

Calculation of the error bounds of the fourth-order SPF is much more tedious but nevertheless 
straightforward. As the method of calculation has now been examplified twice in the above, we 
merely give the final results without proof. It can be shown that [35] 

lle-iTH _ e-iTHl/2 e-irH,/2 eir3C(H,, Hz) e-iTHz/2 ,-iTH,/2 11 G c4T5 + 0(~7), (A.21) 

where C(H,, H2) = [Hi + 2H2, [HI, H2]]/24 and 

~4” Ilk [HI, H211/20+ ([HI, [HI, [HI, [HI, H2]]]] 

+4[ff2, [HI, [HI, [HI, H2]]]] +6[H2, [H2, [HI, [HI, H2]]]] 

+4[H,7 IH2, [H2, [HI, H2]]]]/8Oll. 

From (A.21) it then follows that 

(A.22) 

IIL&(t) - +4m ~C4t~4+w-L (A.23) 

in wh+h +4(t) c e-iM/2 e-irH/2 eiT3C(Hl, HZ) e-irH2/2 e-iTH1/2 q(O). 

In practical applications of the fourth-order SPF, it is necessary to approximate ei73c(Hl,H2) by 

FI:=, ei’3c, where C( HI, H,) = C:=,C,. It is easy to prove that this replacement does not affect 
the order of correctness of the fourth-order SPF. By the triangle inequality 

11 e-irH _ e-irH,/2 e-irHz/2 eidC(H,,H,) e-irH,/2 e-irH,/2 

e 
-iTH,/2 e-irH,/2 

II 

G c4r5 + o( r6) + (A.24) 
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Invoking (AXb) then gives 

(I e- irH _ e-iTH,/2 e-iTH2/2 e -irH,/2 e-irH,/2 (A.23 

as claimed. 

Appendix B. C( T, U) and C(K,, IKE) 

As the expressions of C( T, 7-J) and C( K,, Kn) (and generalizations of it) have been obtained 
by straightforward calculation of commutators only the final results are given. The kinetic energy 
for a particle moving on a d-dimensional hypercubic lattice A reads 

T= If c CL,n+ekkI+e + c,=ec*L 
nEA e 

(B.1) 

where the sum over II runs over all lattice points. The sum over e goes over all unit vectors and 
the site-dependent hopping energy t,,,f has been introduced to facilitate taking into account 
boundary conditions. For free-boundary conditions, f_j = 0 if n E A or n’ 6G A and t,,,! = 1 if 
n, j’EA. 

The potential energy is given by 

U= W C e,n,. (B.2) 
neA 

The creation (annihilation) operators CL< c,) and the occupation-number operators n, satisfy the 
commutation relations 

[c,’ 9 nj] = -s,iC: ; [C,, nj] = snjC*. (B-3) 

To calculate C( T, U) = [T + 2U, [T, U]]/24 we need 

L”7 LT, ull = - vw2 C Ctn,n+e(cn+e- cn)2(cLcn+e + cL+ecn), 
nGA e 

(B.4a) 

and 

LT9 LT, ull = +2v2w C C [ ti,n-e(cn - cn-e) + ti,n+etcn - cn+e)] nn 
nEA e 

+ v2w C Ctn,n+etn+e,n+2e(En+2e + En - 2En+e)(C,+Cn+2e + C,++2eCn) 
nEA e 

+ v2w C C fn,n-e’tn-e’,n+e-e’(Enfe-e’ + ‘n - 2Ln-e’) 
nEA e>e’ 

x (c,+cn+e-ep + cT+e-e'cn) 
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+ v2w c c tn,n+etn+e,n+e-e’(En+e-e’ + en - k+J 
IlEA e>e’ 

x (&,+,-et + c+e-e,cn) 

+ v2w c c [tn,n+etn+e,n+e+e’(~n+e+e’ + en - %+,I 
ncll e-=-et 

+ tn,n+e’tn+e’,n+e+e’(~n+e+e’ + ‘n - 2cn+e')l 

x kn+cn+e+e’+ c,=e+e4. (B.4b) 

Although admittedly complicated because of the presence of all the t ‘s, employing (B.4) is actual 
applications is much easier as might be expected at first sight. The reason is that in the course of 
computing matrix elements of ei’3c(T,U), crossing the boundaries of the lattice reflects itself 
directly in values of array indices going out of bounds. 

As explained in chapter 2, to approximate the kinetic-energy propagator of a d-dimensional 
system by a real-space, fourth-order SPF it is sufficient is consider the 1D case only. The kinetic 
energy of the 1D system with free-boundary conditions reads 

K=Vf( ch+1+ CL4 (B.5) 
I=1 

For purely technical reasons we assume that the number of lattice sites is odd or, in other words 
that L is even. As discussed earlier, K is decomposed as K = K, + K, with 

L/Z-l 

Ko = v c G+1c21+2 + 4+2c21+A 
I=0 

and 

L/2-1 

KE = v ‘c K+2c21+3 + cz+I+3c21+2). 
I=0 

(B.7) 

After some algebra, one finds 

L/2-2 

[Ko, [Ko, &II = -2?73 c (c$+1c21+4 + G/+&21+1) 
I=0 

L/2-1 

+2v3 c b2fi+Zc21+3 + &+3C21+2) - ~3(h.+1 + d+d (B.ga) 

I=0 
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and 

L/2-1 

[KEY [&m &]I = +2v3 c (&2,+3 + c2+1+3c21) 
I=1 

L/2-1 

-2v3 c G+1c21+2 + cz:+2c21+1) + v3(c1+c2 + c,+cd, 

I=0 
(B.8b) 

from which C( K,, Kn) follows directly. 
In some applications, notably continuum problems for which the three-point approximation to 

the Laplacian may not be adequate, a more complicated expression for the kinetic energy T will 
appear. Most frequently T will take the form 

where b, are known constants and Q is a set of vectors connecting two mesh points. For instance 
if d = 1 and Q = 2, the sum in (B.9) runs over nearest and next-nearest neighbors. With an 
appropriate choice of the be, T would then represent a five-point approximation to 3*/8x’, the 
trivial diagonal term not being taken into account. 

In the case of periodic-boundary conditions the general expression of C( T, U) is mostly easily 
obtained by first transforming T and U to Fourier space, working out the commutators and 
transforming back. One finds 

[UT PP ull = - w* c c be(%+e - 42(C:cn+e + c,=ecA 
n=A ~EQ 

(B.lOa) 

[T, [T, u]] = +2W c c b,2(2~,, - en-, - ~+eh, 
ncd .eQ 

+ W c c b:k,+2e + en - kt+e)(~,+~,+2e + ci+2e4 

+2W C C bebL(cn+e-et - cn+e - en-e* + ~n)(CTCn+e-e~ + CL+,-ercn), 

ncA e,,e;z,Q 

(BSOb) 

where “ > ” stands for an arbitrary ordering on the elements of Q. 
To evaluate the expressions that appear in the fourth-order formula of the free-particle 

propagator proceed as follows. As before, first use the fact that T = C, E QTe and [T,, T,*] = 0 to 
reduce the problem to the calculation of C( Toe, TE,). We have added subscripts to the sets 0 and 
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E to indicate that in general they depend on the choice of e. For instance if d = 1 and e = 2, 
O,= (1, 2, 5, 6 ,... } and E,= {3,4, 7, 8 ,... }. Note that since we must have 0, U E, = A and 
0, n E, = 0, there will be some minor restrictions on the linear size of the lattice, as can be seen 
in the example above where the number of lattice sites needs to be a multiple of four. Keeping 
this in mind, a straightforward calculation yields 

and 

[ TE,7 [Toe, TEJ] = -2be c (c,+c,+e + C,=&“> + 2be c w,+3e + c,=3ecn), 
?t‘FE, #lEE, 

(B.llb) 

whereby it has been assumed that periodic-boundary conditions are taken into account. Remark 
that as a direct consequence of this C( Toe, TE,) will vanish if e and the shape of the lattice are 
such that for all n, lattice site n + 4e coincides with site n. Obviously the corresponding 
second-order formula then becomes exact. This is a generalization of a result obtained earlier 
[26]. For example if d = 1, L = 8 and e = 2, then C(Toe, TE,) = 0. 
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